Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T07:23:08.908Z Has data issue: false hasContentIssue false

Influence of temperature on pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae) resistance to natural enemy attack

Published online by Cambridge University Press:  09 March 2007

D.A. Stacey
Affiliation:
NERC Centre for Population Biology, Imperial College at Silwood Park, Ascot, Berkshire, SL5 7PY, UK
M.D.E. Fellowes*
Affiliation:
NERC Centre for Population Biology, Imperial College at Silwood Park, Ascot, Berkshire, SL5 7PY, UK School of Animal and Microbial Sciences, University of Reading, PO Box 228, Whiteknights, Reading, Berkshire, RG6 6AJ, UK
*
*Fax: +44 (0118) 931 0180 E-mail: m.fellowes@reading.ac.uk

Abstract

The ability to resist or avoid natural enemy attack is a critically important insect life history trait, yet little is understood of how these traits may be affected by temperature. This study investigated how different genotypes of the pea aphid Acyrthosiphon pisum Harris, a pest of leguminous crops, varied in resistance to three different natural enemies (a fungal pathogen, two species of parasitoid wasp and a coccinellid beetle), and whether expression of resistance was influenced by temperature. Substantial clonal variation in resistance to the three natural enemies was found. Temperature influenced the number of aphids succumbing to the fungal pathogen Erynia neoaphidis Remaudière & Hennebert, with resistance increasing at higher temperatures (18 vs. 28°C). A temperature difference of 5°C (18 vs. 23°C) did not affect the ability of A. pisum to resist attack by the parasitoids Aphidius ervi Haliday and A. eadyi Starý, González & Hall. Escape behaviour from foraging coccinellid beetles (Hippodamia convergens Guerin-Meneville) was not directly influenced by aphid clone or temperature (16 vs. 21°C). However, there were significant interactions between clone and temperature (while most clones did not respond to temperature, one was less likely to escape at 16°C), and between aphid clone and ladybird presence (some clones showed greater changes in escape behaviour in response to the presence of foraging coccinellids than others). Therefore, while larger temperature differences may alter interactions between Acyrthosiphon pisum and an entomopathogen, there is little evidence to suggest that smaller changes in temperature will alter pea aphid–natural enemy interactions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blanford, S. & Thomas, M.B. (1999) Host thermal biology: the key to understanding insect-pathogen interactions and microbial pest control?. Agricultural and Forest Entomology 1, 195202.CrossRefGoogle Scholar
Blanford, S. & Thomas, M.B. (1999) Role of thermal biology in disease dynamics. Aspects of Applied Biology 53, 7382.Google Scholar
Brobyn, P.J., Wilding, N. & Clark, S.J. (1985) The persistence of infectivity of conidia of the aphid pathogen Erynia neoaphidis on leaves in the field. Annals of Applied Biology 107, 365376.CrossRefGoogle Scholar
Cammell, M.E. & Knight, J.D. (1992) Effect of climate change on the population dynamics of crop pests. Advances in Ecological Research 22, 117161.CrossRefGoogle Scholar
Carruthers, R.I., Larkin, T.S., Firstencel, H. & Feng, Z. (1992) Influence of thermal ecology on the mycosis of a rangeland grasshopper. Ecology 73, 190204.CrossRefGoogle Scholar
Davis, A.J., Jenkinson, L.S., Lawton, J.H., Shorrocks, B. & Wood, S. (1998) Making mistakes when predicting shifts in species range in response to global warming. Nature 391, 783786.CrossRefGoogle ScholarPubMed
Davis, A.J., Lawton, J.H., Shorrocks, B. & Jenkinson, L.S. (1998) Individualistic species responses invalidate simple physiological models of community dynamics under global environmental change. Journal of Animal Ecology 67, 600612.CrossRefGoogle Scholar
Dill, L.M., Fraser, A.H.G. & Roitberg, B.D. (1990) The economics of escape behaviour in the pea aphid, Acyrthosiphon pisum. Oecologia 83, 473478.CrossRefGoogle ScholarPubMed
Dixon, A.F.G. (1998) In Aphid ecology: an optimisation approach. 2nd edn. pp. 300London: Chapman and Hall.Google Scholar
Fellowes, M.D.E. & Godfray, H.C.J. (2000) The evolutionary ecology of parasitoid resistance by Drosophila. Heredity 84, 18.CrossRefGoogle ScholarPubMed
Fellowes, M.D.E. & Kraaijeveld, A.R. (1998) Coping with multiple enemies – the evolution of resistance and host–parasitoid community structure. Ecology Letters 1, 810.CrossRefGoogle Scholar
Fellowes, M.D.E. & Travis, J.M.J. (2000) Linking the coevolutionary and population dynamics of host–parasitoid interactions. Population Ecology 42, 195203.CrossRefGoogle Scholar
Fellowes, M.D.E., Kraaijeveld, A.R. & Godfray, H.C.J. (1998) Trade-off associated with selection for increased ability to resist parasitoid attack in Drosophila melanogaster. Proceedings of the Royal Society of London, Series B 265, 15531558.CrossRefGoogle ScholarPubMed
Fellowes, M.D.E., Kraaijeveld, A.R. & Godfray, H.C.J. (1999) Cross-resistance following artificial selection for increased defence against parasitoids in Drosophila melanogaster. Evolution 53, 966972.CrossRefGoogle ScholarPubMed
Feng, M.G., Poprawski, T.J., Nowierski, R.M. & Zeng, Z. (1999) Infectivity of Pandora neoaphidis (Zygomycetes: Entomophthorales) to Acyrthosiphon pisum (Hom., Aphididae) in response to varying temperature and photoperiod regimes. Journal of Applied Entomology 123, 2935.CrossRefGoogle Scholar
Ferrari, J., Müller, C.B., Kraaijeveld, A.R. & Godfray, H.C.J. (2001) Clonal variation and covariation in aphid resistance to parasitoids and a pathogen. Evolution 55, 18051814.Google Scholar
Godfray, H.C.J. (1994) In Parasitoids: behavioural and evolutionary ecology. 473 pp. New Jersey: Princeton University Press.CrossRefGoogle Scholar
Hajek., A.E., Larkin, T.S., Carruthers, R.I. & Soper, R.S. (1993) Modeling the dynamics of Entomophaga maimaiga (Zyygomycetes: Entomophthorales) epizootics in gypsy moth (Lepidoptera: Lymantriidae) populations. Environmental Entomology 22, 11721187.CrossRefGoogle Scholar
Henter, H.J. & Via, S. (1995) The potential for co-evolution in a host-parasitoid system – 1: Genetic variation within an aphid population in susceptibility to a parasitic wasp. Evolution 49, 427438.Google Scholar
Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J. & Xiaosu, D. (Eds). (2001) In Climate change 2001, the scientific basis. 944 pp. Cambridge: Cambridge University Press.Google Scholar
Hufbauer, R.A. & Via, S. (1999) Evolution of an aphid-parasitoid interaction: variation in resistance to parasitism among aphid populations specialised on different plants. Evolution 53, 14351445.Google ScholarPubMed
Hulme, M. & Jenkins, G. (1998) Climate change scenarios for the UK: scientific report. 80 pp. UKCIP Technical Report No.1, Climate Research Unit, Norwich.Google Scholar
Illiadi, K., Illiadi, N., Rashkovetsky, E., Minkov, I., Nevo, E. & Korol, A. (2001) Sexual and reproductive behaviour of Drosophila melanogaster from a microclimatically interslope differentiated population of ‘Evolution Canyon’ (Mount Carmel, Israel). Proceedings of the Royal Society of London, Series B 268, 23652374.CrossRefGoogle Scholar
Kraaijeveld, A.R. & Godfray, H.C.J. (1997) Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Nature 389, 278280.CrossRefGoogle ScholarPubMed
Lagos, N.A., Fuentas-Contreras, E., Bozinovic, F. & Niemeyer, H.M. (2001) Behavioural thermoregulation in Acyrthosiphon pisum (Homoptera: Aphididae): the effect of parasitism by Aphidius ervi (Hymenoptera: Braconidae). Journal of Thermal Biology 26, 133137.CrossRefGoogle ScholarPubMed
Lamb, R.J., MacKay, P.A. & Gerber, G.H. (1987) Are development and growth of pea aphids, Acyrthosiphon pisum, in North America adapted to local temperatures?. Oecologia 72, 170177.CrossRefGoogle ScholarPubMed
Lane, A. & Walters, K.F.A. (1991) Effect of pea aphid (Acyrthosiphon pisum) on the yield of combining peas. Aspects of Applied Biology 27, 363368.Google Scholar
Losey, J.E. & Denno, R.F. (1998) The escape response of pea aphids to foliar foraging predators: factors affecting dropping behaviour. Ecological Entomology 23, 5361.CrossRefGoogle Scholar
McGuire, M.R., Maddox, J.V. & Armhurst, E.J. (1987) Effect of temperature in the distribution and success of introduction of an Empoasca fabae (Homoptera: Cicadellidae) isolate of Erynia radicans (Zygomycetes: Entomophthoraceae). Journal of Invertebrate Pathology 50, 291301.CrossRefGoogle Scholar
Milner, R.J. (1982) On the occurrence of pea aphids, Acyrthosiphon pisum, resistant to isolates of the fungal pathogen Erynia neoaphidis. Entomologia Experimentalis et Applicata 32,2327.CrossRefGoogle Scholar
Milner, R.J. (1985) Distribution in time and space of resistance to the pathogenic fungus Erynia neoaphidis in the pea aphid in Acyrthosiphon pisum. Entomologia Experimentalis et Applicata 37, 235240.CrossRefGoogle Scholar
Morgan, D., Walters, K.F.A. & Aegerter, J.N. (2001) Effect of temperature and cultivar on pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae) life history. Bulletin of Entomological Research 91, 4752.CrossRefGoogle ScholarPubMed
Morgan, L.W., Boddy, L., Clark, S.J. & Wilding, N. (1995) Influence of temperature on germination of primary and secondary conidia of Erynia neoaphidis (Zygomycetes, Entomophthorales). Journal of Invertebrate Pathology 65, 132138.CrossRefGoogle Scholar
Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J.K., Thomas, C.D., Descimon, H., Huntley, B., Kaila, L., Kullberg, J., Tammaru, T., Tennent, W.J., Thomas, J.A. & Warren, M. (1999) Poleward shifts in geographical ranges of butterfly species associated with global warming. Nature 399, 579583.CrossRefGoogle Scholar
Potvin, C. & Tousignant, D. (1996) Evolutionary consequences of simulated global change: genetic adaptation or adaptive phenotypic plasticity. Oecologia 108, 683693.CrossRefGoogle ScholarPubMed
Roy, D.B. & Sparks, T.H. (2000) Phenology of British butterflies and climate change. Global Change Biology 6, 407416.CrossRefGoogle Scholar
Roy, H.E., Pell, J.K. & Alderson, P.G. (1999) Effects of fungal infection on the alarm response of pea aphids. Journal of Invertebrate Pathology 74, 6975.CrossRefGoogle ScholarPubMed
Salt, G. (1970) In The cellular defence reactions of insects. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Sigsgaard, L. (2000) The temperature-dependent duration of development and parasitism of three cereal aphid parasitoids, Aphidius ervi, A. rhopalosiphi and Praon volucre. Entomologia Experimentalis et Applicata 95, 173184.CrossRefGoogle Scholar
Sokal, R.R. & Rohlf, F.J. (1995) In Biometry. 887 pp. New York: W.H. Freeman and Company.Google Scholar
Stacy, D.A. & Fellowes, M.D.E. (2002a) Influence of elevated CO2 on interspecific interactions at higher trophic levels. Global Change Biology, in press.CrossRefGoogle Scholar
Stacy, D.A. & Fellowes, M.D.E. (2002b) Does the relationship between temperature and development rate vary across thrips populations?. European Journal of Entomology, in press.Google Scholar
Stacey, D.A. & Wildman, D. (2002) Construction of small controlled temperature chambers. Antenna (in press).Google Scholar
Starý, P., Gonzalez, D. & Hall, J.C. (1980) Aphidius eadyi n. sp. (Hymenoptera: Aphidiidae), a widely distributed parasitoid of the pea aphid, Acyrthosiphon pisum (Harris) in the Palaearctic. Entomologica Scandinavia 11, 473480.CrossRefGoogle Scholar
Thompson, J.N. (1990) Coevolution and the evolutionary genetics of interactions among plants and insects and pathogens. In Pests, pathogens and plant communities. pp. 249271. [Burdonk, J.J. & Leather, S.R., (Eds) Pests, pathogens and plant communities.. Oxford: Blackwell.Google Scholar
Thompson, J.N. (1994) In The coevolutionary process. 287 pp. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Thompson, J.N. (1998) The population biology of coevolution. Researches in Population Ecology 40, 159166.CrossRefGoogle Scholar
Thompson, J.N. (1999) Specific hypotheses on the geographic mosaic of coevolution. American Naturalist 153, S1S14.CrossRefGoogle Scholar
Visser, M.E. & Holleman, L.J.M. (2001) Warmer springs disrupt the synchrony of oak and winter moth phenology. Proceedings of the Royal Society of London, Series B 268, 289294.CrossRefGoogle Scholar
Watson, D.W., Mullens, B.A. & Petersen, J.J. (1993) Behavioural fever response of Musca domestica (Diptera: Muscidae) to infection by Entomophthora muscae (Zygomycetes: Entomophthorales). Journal of Invertebrate Pathology 61, 1016.CrossRefGoogle Scholar
Wilding, N., Mardell, S. & Brobyn, P. (1986) Introducing Erynia neoaphidis into a field population of Aphis fabae – form of the inoculum and effect of irrigation. Annals of Applied Biology 108, 373385.CrossRefGoogle Scholar
Zar, J.H. (1999) In Biostatistical analysis 4th edn. 663 pp. New Jersey, Prentice Hall:.Google Scholar