Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T06:54:59.245Z Has data issue: false hasContentIssue false

Male flight phenology of the European grapevine moth Lobesia botrana (Lepidoptera: Tortricidae) in different wine-growing regions in Spain

Published online by Cambridge University Press:  09 May 2014

V. Ortega-López*
Affiliation:
Civil Engineering Department, University of Burgos, Calle Villadiego s/n, E-09001 Burgos, Spain
M. Amo-Salas
Affiliation:
Mathematics Department, University of Castilla-La Mancha, Camino de Moledores s/n, E-13071 Ciudad Real, Spain
A. Ortiz-Barredo
Affiliation:
Plant Production and Protection Department, NEIKER-Tecnalia, E-01080 Vitoria-Gasteiz, Spain
A.M. Díez-Navajas
Affiliation:
Plant Production and Protection Department, NEIKER-Tecnalia, E-01080 Vitoria-Gasteiz, Spain
*
*Author for correspondence Phone: +34 947259078 Fax: +34 947259478 E-mail: vortega@ubu.es

Abstract

Lobesia botrana is the most significant pest of grape berries in Spain. Further knowledge of its phenology would enable wine growers to decide on an optimal treatment schedule. The aim of this study is, therefore, to predict the flight peaks of L. botrana in seven wine-growing regions of Spain. The main goal is to provide a prediction model based on meteorological data records. A logistic function model, based on temperature and humidity records, together with an exhaustive statistical analysis, were used to compare the wine-growing regions in which the male flight phenology of L. botrana displays similar patterns and to sort them into groups. By doing so, a joint study of the dynamics of the moth is possible in the regions within each group. A comparison of the prediction errors before and after applying the Touzeau model confirmed that the fit of the latter model is not sufficiently accurate for the regions under study. Moth flight predictions with the logistic function model are good, but accuracy may still be improved by evaluating other non-biotic and biotic factors.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainseba, B., Picart, D. & Thiéry, D. (2011) An innovative multistage, physiologically structured, population model to understand the European grapevine moth dynamics. Journal of Mathematical Analysis and Applications 382, 3446.CrossRefGoogle Scholar
Amo-Salas, M., Ortega-López, V., Harman, R. & Alonso-González, A. (2011) A new model for predicting the flight activity of Lobesia botrana (Lepidoptera: Tortricidae). Crop Protection 30, 15861593.CrossRefGoogle Scholar
Anfora, G., Tasin, M., Backman, A.C., de Cristofaro, A., Witzgall, P. & Ioriatti, C. (2005) Attractiveness of year-old polyethylene isonet sex pheromone dispensers for Lobesia botrana. Entomologia Experimentalis et Applicata 117, 201207.CrossRefGoogle Scholar
Anshelevich, L., Kehat, M., Dunkelblum, E. & Greenberg, S. (1994) Sex-pheromone traps for monitoring the European vine moth, Lobesia botrana: effect of dispenser type, pheromone dose, field aging of dispenser, and type of trap on male captures. Phytoparasitica 22, 281290.CrossRefGoogle Scholar
Armendáriz, I., Pérez-Sanz, A. & Miranda, L. (2010) Predicción de la polilla del racimo de la vid (Lobesia botrana) en seis Denominaciones de Origen de Castilla y León. Boletín de Sanidad Vegetal Plagas 36, 1122.Google Scholar
Coscollá, R. (1997) La polilla del racimo de la vid (Lobesia botrana Den. & Schiff.). Generalitat Valenciana. Consellería de Agricultura, Pesca y Alimentación. Valencia, Spain.Google Scholar
Cossu, Q.A., Delrio, G., Di Cola, G. & Gilioli, G. (1999) Modelli matematici nella protezione integrata delle colture in Sardegna. Collana di Agrometeorologia per la Sardegna, NotaTecnica 3. Italy.Google Scholar
Cozzi, G., Pascale, A., Perrone, G., Visconti, A. & Logrieco, A. (2006) Effect of Lobesia botrana damages on black aspergilli rot and ochratoxin A content in grapes. International Journal of Food Microbiology 111, S88S92.CrossRefGoogle ScholarPubMed
Cravedi, P. & Mazzoni, E. (1994) Verfication of the relation between degree-days and pheromone trap catches of Lobesia botrana (Den. & Schiff.) (Lepidoptera Tortricidae). Redia 77, 109122.Google Scholar
Delbac, L., Lecharpentier, P. & Thiery, D. (2010) Larval instars determination for the European Grapevine Moth (Lepidoptera: Tortricidae) based on the frequency distribution of head-capsule widths. Crop Protection 29, 623630.CrossRefGoogle Scholar
Del Tío, R., Martinez, J.L., Ocete, R. & Ocete, M.E. (2001) Study of the relationship between sex pheromone trap catches of Lobesia botrana (Den. & Schiff.) (Lep., Tortricidae) and the accumulation of degree-days in sherry vineyards (SW of Spain). Journal of Applied Entomology-Zeitschrift Fur Angewandte Entomologie 125, 914.Google Scholar
Fermaud, M. (1998) Cultivar susceptibility of grape berry clusters to larvae of Lobesia botrana (Lepidoptera: Tortricidae). Journal of Economic Entomology 91, 974980.CrossRefGoogle Scholar
Fermaud, M. & Le Menn, R. (1989) Association of Botrytis cinerea with grape berry moth larvae. Phytopathology 79, 651656.CrossRefGoogle Scholar
Gabel, B. & Mocko, V. (1984) Forecasting the cyclical timing of the grape vine moth, Lobesia botrana (Lepidoptera: Tortricidae). Acta Entomologica Bohemoslovaca 81, 114.Google Scholar
Gabel, B. & Roehrich, R. (1995) Sensitivity of grapevine phenological stages to larvae of European Grapevine Moth, Lobesia botrana Den. and Schiff. (lep.Tortricidae). Journal of Applied Entomology – Zeitschrift Fur Angewandte Entomologie 119, 127130.Google Scholar
Gutierrez, A.P., Ponti, L., Cooper, M.L., Gilioli, G., Baumgärtner, J. & Duso, C. (2012) Prospective analysis of the invasive potential of the European grapevine moth Lobesia botrana (Den. & Schiff.) in California. Agricultural and Forest Entomology 14, 225238.CrossRefGoogle Scholar
Ioratti, C., Anfora, G., Tasin, M., De Cristofaro, A., Witzgall, P. & Lucchi, A. (2011) Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). Journal of Economic Entomology 104, 11251137.CrossRefGoogle Scholar
Milonas, P.G., Savopoulou-Soultani, M. & Stavridis, D.G. (2001) Day-degree models for predicting the generation time and flight activity of local populations of Lobesia botrana (Den. & Schiff.) (Lep., Tortricidae) in Greece. Journal of Applied Entomology – Zeitschrift Fur Angewandte Entomologie 125, 515518.Google Scholar
Moravie, M.A., Davison, A.C., Pasquier, D. & Charmillot, P.J. (2006) Bayesian forecasting of grape moth emergence. Ecological Modelling 197, 478489.CrossRefGoogle Scholar
Moreau, J., Benrey, B. & Thiéry, D. (2006 a) Grape variety effects larval performance and also female reproductive performance of the European grapevine moth Lobesia botrana (Lepidoptera: Tortricidae). Bulletin of Entomological Research 96, 205212.CrossRefGoogle Scholar
Moreau, J., Benrey, B. & Thiéry, D. (2006 b) Assessing larval food quality for phytophagous insects: are the facts as simple as they appear? Functional Ecology 20, 592600.CrossRefGoogle Scholar
Moreau, J., Arruego, X., Benrey, B. & Thiéry, D. (2006 c) Differences in nutritional quality of parts of Vitis vinifera berries affect fitness of the European grapevine moth. Entomologia Experimentalis et Applicata 119, 9399.CrossRefGoogle Scholar
Moreau, J., Thiéry, D., Troussard, P.J. & Benrey, B. (2007) Grape variety affects female but also male reproductive success in wild European grapevine moths. Ecological Entomology 32, 747753.CrossRefGoogle Scholar
Ruiz de Escudero, I., Baltasar Escriche, A.E. & Caballero, P. (2007) Potential of the Bacillus thuringiensis toxin reservoir for the control of Lobesia botrana (Lepidoptera: Tortricidae), a major pest of grape plants. Applied and environmental microbiology 73, 337340.CrossRefGoogle Scholar
Sáenz-De-Cabezón, E., Hernández, L.J., Rivas, M.T., García-Ruiz, E., Marco, V., Pérez-Moreno, I. & Sáenz-De-Cabezón, F.J. (2011) A computer implementation of the partition of the unity procedure and its application to arthropod population dynamics. A case study on the European grape berry moth. Mathematics and Computers in Simulation 82, 214.CrossRefGoogle Scholar
Savopoulou-Soultani, M., Stavridis, D.G. & Tzanakakis, M.E. (1990) Development and reproduction of Lobesia botrana on vine and olive inlorescences. Entomologia Hellenica 8, 2935.CrossRefGoogle Scholar
Savopoulou-Soultani, M., Nikolaou, N. & Milonas, P.G. (1999) Influence of maturity stage of grape berries on the development of Lobesia botrana (Lepidoptera: Tortricidae) larvae. Journal of Economic Entomology 92, 551556.CrossRefGoogle Scholar
Schmidt, K., Hoppmann, D., Holst, H. & Berkelmann-Löhnertz, B. (2003) Identifying weather-related covariates controlling grape berry moth dynamics. OEPP/EPPO Bulletin 33, 517524.CrossRefGoogle Scholar
Thiery, D. & Moreau, J. (2005) Relative performance of European grapevine moth (Lobesia botrana) on grapes and other hosts. Oecologia 143, 548557.CrossRefGoogle ScholarPubMed
Thiéry, D. & Moreau, J. (2006) Grape cultivar affects larval and female fitness of European grapevine moth, Lobesia botrana (Lepidoptera: Tortricidae). Integrated Protection in Viticulture 29, 131138.Google Scholar
Thiéry, D., Monceau, K. & Moreau, J. (2013) Different emergence phenology of European grapevine moth (Lobesia botrana, Lepidoptera: Tortricidae) on six varieties of grapes. Bulletin of Entomological Research. Available on CJ02013. DOI: http://dx.doi.org/10.1017/S000748531300031X.Google ScholarPubMed
Torres-Vila, L.M., Stockel, J. & Rodríguez-Molina, M.C. (1996) Efecto de la indisponibilidad de agua sobre el potencial biótico de la polilla del racimo Lobesia botrana Den. y Schiff. (Lepidoptera: Tortricidae). Boletín de Sanidad Vegetal Plagas 22, 443449.Google Scholar
Torres-Vila, L.M., Rodríguez-Molina, M.C., Roehrich, R. & Stockel, J. (1999) Vine phenological stage during larval feeding affects male and female reproductive output of Lobesia botrana (Lepidoptera: Tortricidae). Bulletin of Entomological Research 89, 549556.CrossRefGoogle Scholar
Torres-Vila, L.M., Rodríguez-Molina, M.C., McMinn, M. & Rodríguez-Molina, A. (2005) Larval food source promotes cyclic seasonal variation in polyandry in the moth Lobesia botrana. Behavioral Ecology 16, 114122.CrossRefGoogle Scholar
Touzeau, J. (1981) Modélisation de l'évolution de l'Eudémis de la Vigne por la région MIdi Pyrénées. Bollettino di Zoologia Agraria e di Bachicoltura, ser. II 16, 2628.Google Scholar
Tzanakakis, M.E., Savopoulou-Soultani, M., Oustapassidis, C.S., Verras, S.C. & Hatziemmanuel, H. (1988) Induction of dormancy in Lobesia botrana by long day and high temperature conditions. Entomologica Hellenica 6, 710.CrossRefGoogle Scholar
Vacas, S., Alfaro, C., Zarzo, M., Navarro-Llopis, V. & Primo, J. (2011) Effect of sex pheromone emission on the attraction of Lobesia botrana. Entomologia Experimentalis et Applicata 139, 250257.CrossRefGoogle Scholar
Witzgall, P., Bengtsson, M. & Trimble, R.M. (2000) Sex pheromone of grape berry moth (Lepidoptera: Tortricidae). Environmental Entomology 29, 433436.CrossRefGoogle Scholar
Witzgall, P., Tasin, M., Buser, H.R., Wegner-Kiss, G., Mancebon, V.S.M., Ioriatti, C., Backman, A.C., Bengtsson, M., Lehmann, L. & Francke, W. (2005) New pheromone components of the grapevine moth Lobesia botrana. Journal of Chemical Ecology 31, 29232932.CrossRefGoogle ScholarPubMed
Xuéreb, A. & Thiéry, D. (2006) Does natural larval parasitism of Lobesia botrana (Lepidoptera: Tortricidae) vary between years, generation, density of the host and vine cultivar? Bulletin of Entomological Research 96, 105110.CrossRefGoogle ScholarPubMed