Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T04:40:37.815Z Has data issue: false hasContentIssue false

Microsatellites reveal genetic differentiation among populations in an insect species with high genetic variability in dispersal, the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae)

Published online by Cambridge University Press:  14 April 2009

M.H. Chen
Affiliation:
ETH Zurich, Institute of Plant Sciences/Applied Entomology, Schmelzbergstrasse 9/LFO, CH-8092, Zurich, Switzerland
S. Dorn*
Affiliation:
ETH Zurich, Institute of Plant Sciences/Applied Entomology, Schmelzbergstrasse 9/LFO, CH-8092, Zurich, Switzerland
*
*Author for correspondence Fax: +41 44 632 1171 E-mail: silvia.dorn@ipw.agrl.ethz.ch

Abstract

Little is known about genetic differentiation and gene flow in populations of insect species that have a high genetic variability in dispersal but lack morphologically visible morphs that disperse. These characteristics apply to the codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), a major pest of fruits and nuts. Larvae were collected from three orchards each of pome fruits, stone fruits and nut trees in a major fruit growing area of Switzerland (Valais) and from six further (mainly apple) orchards throughout this country. Nine microsatellite loci were used to investigate genetic differentiation and the amount of gene flow among the sampled populations. All the loci were shown to be polymorphic in all populations. The number of alleles ranged from five to 15 over nine loci for the 15 populations. Significant genetic differentiation was noted among the populations from apple, apricot and walnut in the Valais region. Furthermore, among the eight populations sampled from apple in different geographic regions throughout Switzerland, AMOVA and pairwise FST analysis revealed significant population genetic differentiation even between populations collected from orchards ≪10 km apart. These results indicate that a distinct prevailing characteristic, in the present case the sedentary behaviour of the moth, can shape population architecture.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailly, X., Migeon, A. & Navajas, M. (2004) Analysis of microsatellite variation in the spider mite pest Tetranychus turkestani (Acari: Tetranychidae) reveals population genetic structure and raises questions about related ecological factors. Biological Journal of the Linnean Society 82, 6978.CrossRefGoogle Scholar
Barnes, M.M. (1991) Codling moth occurrence, host race formation and damage. pp. 313327in van der Geest, L.P.S. & Evenhuis, H.H. (Eds) Tortricid Pests: Their Biology, Natural Enemies and Control. Amsterdam, The Netherlands, Elsevier.Google Scholar
Beaumont, M.A. & Bruford, M.W. (1999) Microsatellites in conservation genetics. pp. 165182in Goldstein, D.B. & Schlötterer, C. (Eds) Microsatellites: Evolution and Applications. New York, USA, Oxford University Press.CrossRefGoogle Scholar
Bohonak, A.J. (1999) Dispersal, gene flow, and population structure. Quarterly Review of Biology 74, 2145.CrossRefGoogle ScholarPubMed
Bovey, R. (1979) La Défense des Plantes Cutivées. 863Lausanne, Switzerland, Edition Payot.Google Scholar
Buès, R. & Toubon, J.F. (1992) Polymorphisme enzymatique dans différentes populations de Cydia pomonella L. (Lep. Tortricidae). Acta Oecologica-International Journal of Ecology 13, 583591.Google Scholar
Buès, R., Toubon, J.F. & Poitout, H.S. (1995) Variabilité écophysiologique et enzymatique de Cydia pomonella L. en fonction de l'origine géographique et de la plante hôte. Agronomie 15, 221231.CrossRefGoogle Scholar
Chapuis, M.P. & Estoup, A. (2007) Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution 24, 621631.CrossRefGoogle ScholarPubMed
Chapuis, M.P., Loiseau, A., Michalakis, Y., Lecoq, M. & Estoup, A. (2005) Characterization and PCR multiplexing of polymorphic microsatellite loci for the locust Locusta migratoria. Molecular Ecology Notes 5, 554557.CrossRefGoogle Scholar
Costantini, F., Fauvelot, C. & Abbiati, M. (2007) Genetic structuring of the temperate gorgonian coral (Corallium rubrum) across the western Mediterranean Sea revealed by microsatellites and nuclear sequences. Molecular Ecology 16, 51685182.CrossRefGoogle ScholarPubMed
Dempster, A.P., Laird, N.M. & Rubin, D.B. (1977) Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B 39, 138.Google Scholar
Denholm, I. & Rowland, M.W. (1992) Tactics for managing pesticide resistance in arthropods: theory and practice. Annual Review of Entomology 37, 91–112.CrossRefGoogle ScholarPubMed
Dorn, S. & Gu, H. (1999) Laboratory evaluation of influence of surface residues of azinphos-methyl on adult activity of the codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae). IOBC/WPRS Bulletin 22, 195199.Google Scholar
Dorn, S., Schumacher, P., Abivardi, C. & Meyhöfer, R. (1999) Global and regional pest insects and their antagonists in orchards: spatial dynamics. Agriculture Ecosystems and Environment 73, 111118.CrossRefGoogle Scholar
Endersby, N.M., Ridland, P.M. & Zhang, J. (2004) Reduced susceptibility to permethrin in diamondback moth populations from vegetable and non-vegetable hosts in southern Australia. pp. 319325in Endersby, N.M. & Ridland, P.M. (Eds) The Management of Diamondback Moth and Other Crucifer Pests: Proceedings of the Fourth International Workshop. The Regional Institute, 26–29 November 2001, Melbourne, Australia.Google Scholar
Endersby, N.M., Mckechnie, S.W., Ridland, P.M. & Weeks, A.R. (2006) Microsatellites reveal a lack of structure in Australian populations of the diamondback moth, Plutella xylostella (L.). Molecular Ecology 15, 107118.CrossRefGoogle ScholarPubMed
Excoffier, L., Laval, G. & Schneider, S. (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 4750.Google Scholar
Franck, P., Guérin, F., Loiseau, A. & Sauphanor, B. (2005) Isolation and characterization of microsatellite loci in the codling moth Cydia pomonella (Lepidoptera: Tortricidae). Molecular Ecology Notes 5, 99–102.CrossRefGoogle Scholar
Franck, P., Reyes, M., Olivares, J. & Sauphanor, B. (2007) Genetic architecture in codling moth populations: comparison between microsatellite and insecticide resistance markers. Molecular Ecology 16, 35543564.CrossRefGoogle ScholarPubMed
Fuentes-Contreras, E., Reyes, M., Barros, W. & Sauphanor, B. (2007) Evaluation of azinphosmethyl resistance and activity of detoxifying enzymes in codling moth (Lepidoptera: Tortricidae) from central Chile. Journal of Economic Entomology 100, 551556.CrossRefGoogle ScholarPubMed
Fuentes-Contreras, E., Espinoza, J.L., Lavandero, B. & Bamírez, C.C. (2008) Population genetic structure of codling moth (Lepidoptera: Tortricidae) from apple orchards in central Chile. Journal of Economic Entomology 101, 190198.CrossRefGoogle ScholarPubMed
Geier, P.W. (1963) The life history of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), in the Australian capital territory. Australian Journal of Zoology 11, 323367.CrossRefGoogle Scholar
Gu, H., Hughes, J. & Dorn, S. (2006) Trade-off between mobility and fitness in Cydia pomonella L. (Lepidoptera: Tortricidae). Ecological Entomology 31, 6874.CrossRefGoogle Scholar
Hansen, J.D., Heidt, M.L. & Anderson, P.A. (2006) Bin sterilization to prevent reintroduction of codling moth. Journal of Agricultural and Urban Entomology 23, 1726.Google Scholar
Harper, G.L., Maclean, N. & Goulson, D. (2003) Microsatellite markers to assess the influence of population size, isolation and demographic change on the genetic structure of the UK butterfly, Polyommatus bellargus. Molecular Ecology 12, 33493357.CrossRefGoogle ScholarPubMed
Hendry, A.P., Nosil, P. & Rieseberg, L.H. (2007) The speed of ecological speciation. Functional Ecology 21, 455464.CrossRefGoogle ScholarPubMed
Ioriatti, C., Tasin, M., Charmillot, P.J., Reyes, M. & Sauphanor, B. (2007) Early detection of resistance to tebufenozide in field populations of Cydia pomonella L.: methods and mechanisms. Journal of Applied Entomology 131, 453459.CrossRefGoogle Scholar
Ji, Y.J., Zhang, D.X., Hewitt, G.M., Kang, L. & Li, D.M. (2003) Polymorphic microsatellite loci for the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) and some remarks on their isolation. Molecular Ecology Notes 3, 102104.CrossRefGoogle Scholar
Keil, S., Gu, H. & Dorn, S. (2001) Response of Cydia pomonella to selection on mobility: laboratory evaluation and field verification. Ecological Entomology 26, 495501.CrossRefGoogle Scholar
Keyghobadi, N., Roland, J. & Strobeck, C. (1999) Influence of landscape on the population genetic structure of the alpine butterfly Parnassius smintheus (Papilionidae). Molecular Ecology 8, 14811495.CrossRefGoogle ScholarPubMed
Keyghobadi, N., Roland, J. & Strobeck, C. (2005) Genetic differentiation and gene flow among populations of the alpine butterfly, Parnassius smintheus, vary with landscape connectivity. Molecular Ecology 14, 18971909.CrossRefGoogle ScholarPubMed
Keyghobadi, N., Unger, K.P., Weintraub, J.D. & Fonseca, D.M. (2006) Remnant populations of the regal fritillary (Speyeria idalia) in Pennsylvania: Local genetic structure in a high gene flow species. Conservation Genetics 7, 309313.CrossRefGoogle Scholar
Li, G., Hubert, S., Bucklin, K., Ribes, V. & Hedgecock, D. (2003) Characterization of 79 microsatellite DNA markers in the Pacific oyster Crassostrea gigas. Molecular Ecology Notes 3, 228232.CrossRefGoogle Scholar
Li, Y.C., Korol, A.B., Fahima, T., Beiles, A. & Nevo, E. (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Molecular Ecology 11, 24532465.CrossRefGoogle ScholarPubMed
Loxdale, H.D. & Lushai, G. (1998) Molecular markers in entomology. Bulletin of Entomological Research 88, 577600.CrossRefGoogle Scholar
Loxdale, H.D. & Lushai, G. (2001) Use of genetic diversity in movement studies of flying insects. pp. 361386in Woiwod, I.P., Reynolds, D.R. & Thomas, C.D. (Eds) Insect Movement: Mechanisms and Consequences: Royal Entomological Society 20th International Symposium volume. 13–14 September 1999, Imperial College, London, UK.Google Scholar
Loxdale, H.D., Hardie, J., Halbert, S., Foottit, R., Kidd, N.A.C. & Carter, C.I. (1993) The relative importance of short- and long-range movement of flying aphids. Biological Reviews 68, 291311.CrossRefGoogle Scholar
Mani, E. & Wildbolz, T. (1977) The dispersal of male codling moths (Laspeyresia pomonella L.) in the Upper Rhine Valley. Zeitschrift für Angewandte Entomologie 83, 161168.CrossRefGoogle Scholar
Meglécz, E. & Solignac, M. (1998) Microsatellite loci for Parnassius mnemosyne (Lepidoptera). Hereditas 128, 179180.CrossRefGoogle Scholar
Meglécz, E., Petenian, F., Danchin, E., D'Acier, A.C., Rasplus, J.Y. & Faure, E. (2004) High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydryas aurinia. Molecular Ecology 13, 16931700.CrossRefGoogle ScholarPubMed
Miller, M.P. (1997) Tools for population genetic analyses v 1.3. http://www.marksgeneticsoftware.net/.Google Scholar
Miller, N.J., Birley, A.J., Overall, A.D.J. & Tatchell, G.M. (2003) Population genetic structure of the lettuce root aphid, Pemphigus bursarius (L.), in relation to geographic distance, gene flow and host plant usage. Heredity 91, 217223.CrossRefGoogle ScholarPubMed
Nei, M. (1972) Genetic distance between populations. American Naturalist 106, 283292.CrossRefGoogle Scholar
Orsini, L., Corander, J., Alasentie, A. & Hanski, I. (2008) Genetic spatial structure in a butterfly metapopulation correlates better with past than present demographic structure. Molecular Ecology 17, 26292642.CrossRefGoogle Scholar
Pasquier, D. & Charmillot, P.J. (2003) Effectiveness of twelve insecticides applied topically to diapausing larvae of the codling moth, Cydia pomonella L. Pest Management Science 60, 305308.CrossRefGoogle Scholar
Peterson, M.A. & Denno, R.F. (1998) The influence of dispersal and diet breadth on patterns of genetic isolation by distance in phytophagous insects. American Naturalist 152, 428446.CrossRefGoogle ScholarPubMed
Phillips, P.A. & Barnes, M.M. (1975) Host race formation among sympatric apple, walnut, and plum populations of the codling moth, Laspeyresia pomonella. Annals of the Entomological Society of America 68, 10531060.CrossRefGoogle Scholar
Rankin, M.A. & Burchsted, J.C.A. (1992) The cost of migration in insects. Annual Review of Entomology 37, 533559.CrossRefGoogle Scholar
Raymond, M. & Rousset, F. (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity 86, 248249.CrossRefGoogle Scholar
Reuveny, H. & Cohen, E. (2004) Resistance of the codling moth Cydia pomonella (L.) (Lep., Tortricidae) to pesticides in Israel. Journal of Applied Entomology 128, 645651.CrossRefGoogle Scholar
Schumacher, P.D., Weber, C., Hagger, C. & Dorn, S. (1997a) Heritability of flight distance for Cydia pomonella. Entomologia Experimentalis et Applicata 85, 169175.CrossRefGoogle Scholar
Schumacher, P.D., Weyeneth, A., Weber, C. & Dorn, S. (1997b) Long flights in Cydia pomonella L. (Lepidoptera: Tortricidae) measured by a flight mill: influence of sex, mated status and age. Physiological Entomology 22, 149160.CrossRefGoogle Scholar
Scott, L.J., Lawrence, N., Lange, C.L., Graham, G.C., Hardwick, S., Rossiter, L., Dillon, M.L. & Scott, K.D. (2006) Population dynamics and gene flow of Helicoverpa armigera (Lepidoptera: Noctuidae) on cotton and grain crops in the Murrumbidgee Valley, Australia. Journal of Economic Entomology 99, 155163.CrossRefGoogle ScholarPubMed
Singer, M.C., Thomas, C.D. & Parmesan, C. (1993) Rapid human-induced evolution of insect–host associations. Nature 366, 681683.CrossRefGoogle Scholar
Simard, F., Lehmann, T., Lemasson, J.J., Diatta, M. & Fontenille, D. (2000) Persistence of Anopheles arabiensis during the severe dry season conditions in Senegal: an indirect approach using microsatellite loci. Insect Molecular Biology 9, 467479.CrossRefGoogle ScholarPubMed
Subramanian, S. & Mohankumar, S. (2006) Genetic variability of the bollworm, Helicoverpa armigera, occurring on different host plants. Journal of Insect Science 6, 17.CrossRefGoogle ScholarPubMed
Tabashnik, B.E., Cushing, N.L. & Johnson, M.W. (1987) Diamondback moth (Lepidoptera: Plutellidae) resistance to insecticides in Hawaii USA: intra-island variation and cross-resistance. Journal of Economic Entomology 80, 10911099.CrossRefGoogle Scholar
Thaler, R., Brandstätter, A., Meraner, A., Chabicovski, M., Parson, W., Zelger, R., Dalla Via, J. & Dallinger, R. (2008) Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe: II. AFLP analysis reflects human-aided local adaptation of a global pest species. Molecular Phylogenetics and Evolution 48, 838849.CrossRefGoogle ScholarPubMed
Timm, A.E., Geertsema, H. & Warnich, L. (2006) Gene flow among Cydia pomonella (Lepidoptera: Tortricidae) geographic and host populations in South Africa. Journal of Economic Entomology 99, 341348.CrossRefGoogle ScholarPubMed
Tsagkarakou, A., Tsigenopoulos, C.S., Gorman, K., Lagnel, J. & Bedford, I.D. (2007) Biotype status and genetic polymorphism of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) in Greece: mitochondrial DNA and microsatellites. Bulletin of Entomological Research 97, 2940.CrossRefGoogle ScholarPubMed
Vallat, A. & Dorn, S. (2005) Changes in volatile emissions from apple trees and associated response of adult female codling moths over the fruit-growing season. Journal of Agricultural and Food Chemistry 53, 40834090.CrossRefGoogle ScholarPubMed
Zhou, Y.H., Gu, H. & Dorn, S. (2005) Isolation of microsatellite loci in the codling moth Cydia pomonella (Lepidoptera: Tortricidae). Molecular Ecology Notes 5, 226227.CrossRefGoogle Scholar