Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T05:23:46.705Z Has data issue: false hasContentIssue false

Mitochondrial cytochrome oxidase I in tetranychid mites: a comparison between molecular phylogeny and changes of morphological and life history traits

Published online by Cambridge University Press:  10 July 2009

Maria Navajas*
Affiliation:
Laboratoire de Zoologie, INRA-ENSAM-ORSTOM, Montpellier, France, and Institut des Sciences de l'Evolution Laboratoire Génétique et Environnement, Université Montpellier II, Montpellier, France
Jean Gutierrez
Affiliation:
Laboratoire de Zoologie, INRA-ENSAM-ORSTOM, Montpellier, France, and Institut des Sciences de l'Evolution Laboratoire Génétique et Environnement, Université Montpellier II, Montpellier, France
Jacques Lagnel
Affiliation:
Laboratoire de Zoologie, INRA-ENSAM-ORSTOM, Montpellier, France, and Institut des Sciences de l'Evolution Laboratoire Génétique et Environnement, Université Montpellier II, Montpellier, France
Pierre Boursot
Affiliation:
Laboratoire Génome et Populations, Université Montpellier II, Montpellier, France
*
Maria Navajas, Laboratoire de Zoologie, INRA, 2 Place P. Viala, 34060 Montpellier, France.

Abstract

Spider mites, Tetranychidae, represent one of the most cosmopolitan and economically important groups of terrestrial arthropods; however, many aspects of their evolutionary relationships remain uncertain. We sequenced part of the mitochondrial cytochrome oxidase subunit I (COI) gene in 20 species of phytophagous mites belonging to nine genera and two families (Tetranychidae and Tenuipalpidae), including several agricultural pests. As eported in insects, the sequences were extremely rich in A + T (75% on average), especially in the third codon position (95%). However, one of the genera we studied had a significantly lower A + T content (69% on average, 78% in the third codon position), showing that base composition can change substantially over short periods of time. Most interspecific differences were transversions and their number increased steadily with the number of non-synonymous differences, while the number of transitions remained constant. The phylogeny based on COI sequences was inferred using the maximum likelihood method. The results are compatible as a whole with the traditional classification based on morphological characters, but call for some minor taxonomic revisions. Some morphological characters and life history traits (mode of reproduction, adaptation to the host plant) were also analysed within this phylogenetic framework. At the family level, one can see a trend towards thelytoky becoming rarer compared to the general mode of reproduction of the group, arrhenotoky. There is also an evolutionary tendency towards a more complex mode of life, with the production of silk webs and correlated changes of the locomotion apparatus. However, in the Tetranychidae there seems to have been convergent evolution of these morphological characters together with independent development of a common adaptation to this mode of life in different genera.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Clary, D.O. & Wolstenholme, D.R. (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. Journal of Molecular Evolution 22, 252271.CrossRefGoogle ScholarPubMed
Crozier, R.H. & Crozier, Y.C. (1993) The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Genetics 133, 97117.CrossRefGoogle ScholarPubMed
DeSalle, R., Freedman, T., Prager, E.M. & Wilson, A.C. (1987) Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila. journal of Molecular Evolution 26, 157164.CrossRefGoogle ScholarPubMed
Ehara, S. & Gotoh, T. (1992) Descriptions of two Panonychus spider mites from Japan, with a key to species of the genus in the world (Acari: Tetranychidae). Applied Entomology and Zoology 27, 107115.CrossRefGoogle Scholar
Felsenstein, J. (1993) PHYLIP (Phytogeny Inference Package). Version 3.5p. Seattle, Department of Genetics, University of Washington.Google Scholar
Fournier, D., Bride, J.M. & Navajas, M. (1994) Mitochondrial DNA from spider mites: isolation, restriction map and partial sequence of the cytochrome oxidase subunit I gene. Genetica 94, 7375.CrossRefGoogle ScholarPubMed
Gutierrez, J. & Helle, W. (1985) Evolutionary changes in the Tetranychidae. pp. 91107in Helle, W. & Sabelis, M.W. (Eds) Spider mites, their biology, natural enemies and control. Amsterdam, Elsevier.Google Scholar
Gutierrez, J. & Helle, W. (1988) Evolution of the Tetranychidae (Acari: Actinedida). pp. 379383in Channabasavanna, G.P. & Viraktamath, C.A. (Eds.) Progress in acarology. New Delhi, Oxford and IBH Publ.Google Scholar
Gutierrez, J., Bolland, H.R., Etienne, J. & Cotton, D. (1991) A case of deuterotoky in a strain of Mononychellus caribbeanae (Acari: Tetranychidae) on cassava in Guadaloupe. Karyotype and first biological data. pp. 443447in Dusbabek, F. & Bukva, V. (Eds) Modern acarology. Prague, Academia.Google Scholar
Gutierrez, J., Bolland, H.R. & Helle, W. (1979) Karyotypes of the Tetranychidae and the significance for taxonomy. pp. 399404in Rodriguez, J.G. (Ed.) Recent advances in acarology. New York, Academic Press.CrossRefGoogle Scholar
Helle, W., Gutierrez, J. & Bolland, H.R. (1970) A study on sex determination and karyotypic evolution in Tetranychidae. Genetica 41, 2132.CrossRefGoogle Scholar
Irwin, D.M., Kocher, T.D. & Wilson, A.C. (1991) Evolution of the cytochrome b gene of mammals. Journal of Molecular Evolution 32, 128144.CrossRefGoogle ScholarPubMed
Jermiin, L.S. & Crozier, R.H. (1994) The cytochrome b region in the mitochondrial DNA of the ant Tetraponera rufoniger: sequence divergence in Hymenoptera is associated with nucleotide content. Journal of Molecular Evolution 38, 282294.CrossRefGoogle ScholarPubMed
Krantz, G.W. & Lindquist, E.E. (1979) Evolution of phytophagous mites (Acari). Annual Review of Entomology 24, 121158.CrossRefGoogle Scholar
Kumar, S., Tamora, K. & Nei, M. (1993) MEGA: Molecular Evolutionary Genetics Analysis. Version 1.0. Pennsylvania, The Pennsylvania State University.Google Scholar
Lake, J.A. (1987) Rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Molecular Biology and Evolution 4, 167191.Google ScholarPubMed
Lindquist, E.E. (1985) Diagnosis and phylogenetic relationships. pp. 6374in Helle, W. & Sabelis, M.W. (Eds) Spider mites, their biology, natural enemies and control. Amsterdam, Elsevier.Google Scholar
Miller, J.S. & Wenzel, J.W. (1995) Ecological characters and phylogeny. Annual Review of Entomology 40, 389415.CrossRefGoogle Scholar
Mitchell, S.E., Cockburn, A.F. & Seawright, J.A. (1993) The mitochondrial genome of Anopheles quadrimaculatus species A: complete nucleotide sequence and gene organization. Genome 36, 10581073.CrossRefGoogle ScholarPubMed
Mitrofanov, V.I. (1983) Evolution and systematics of tetranychoid mites. pp. 1228in Gelovani, L.V. (Ed.) The fauna and ecology of the invertebrate animals of Metniereba. Tbilisi, Georgia.Google Scholar
Navajas, M., Cotton, D., Kreiter, S. & Gutierrez, J. (1992) Molecular approach in spider mites (Acari: Tetranychidae): preliminary data on ribosomal DNA sequences. Experimental and Applied Acarology 15, 211218.CrossRefGoogle ScholarPubMed
Navajas, M., Gutierrez, J., Bonato, O., Bolland, H.R. & Mapangou-Divasa, S. (1994) Intraspecific diversity of the cassava green mite Mononychellus progresivus (Acari: Tetranychidae) using comparisons of mitochondrial and nuclear ribosomal DNA sequences and cross-breeding. Experimental and Applied Acarology 18, 351360.CrossRefGoogle ScholarPubMed
Norton, R.A., Kethley, J.B., Johnston, D.E. & Oconnor, B.M. (1993) Phylogenetic perspectives on genetic systems and reproductive modes of mites. pp. 899in Wrensch, D.L. & Ebbert, M.A. (Eds) Evolution and diversity of sex ratio. New York, Chapman and Hall.CrossRefGoogle Scholar
Oudemans, A.C. (1931) Acarologische Aanteekeningen CVII. Entomologische Berichten 8, 221236.Google Scholar
Sanger, F., Nicklen, S. & Coulson, A.R. (1977) DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences (USA) 74, 54635467.CrossRefGoogle ScholarPubMed
Simon, C., Frati, F., Backenbach, A., Crespi, B., Liu, H. & Flook, P. (1994) Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651701.CrossRefGoogle Scholar
Wainstein, B.A. (1960) Tetranychid mites of Kazakhstan (with revision of families). 276 pp. Alma-Ata, Kazakhstan Gosud, Isdatel.Google Scholar
Wainstein, B.A. (1963) On several problems of the evolution of the super-family Tetranychoidea (Acariformes). Zoologischeskii Zhurnal 42, 16311637.Google Scholar