Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-13T03:33:22.311Z Has data issue: false hasContentIssue false

Morphological discrimination of a tobacco-feeding form from Myzus persicae (Sulzer) (Hemiptera: Aphididae), and a key to New World Myzus (Nectarosiphon) species

Published online by Cambridge University Press:  10 July 2009

R. L. Blackman
Affiliation:
Department of Entomology, British Museum (Natural History), Cromwell Road, London, SW7 5BD, UK

Abstract

Multivariate techniques, principally the method of canonical variates, were used to investigate morphological variation within and between populations of the group of Myzus persicae (Sulzer) from North and South America, Europe, Africa and Asia. The scores on the first canonical variate of samples from tobacco in North America, the Mediterranean region, the Middle East, Africa and Sri Lanka all grouped consistently when compared with samples from other host-plants, even after aphids from tobacco had been reared for up to seven years on a non-tobacco host. Thus there is a widely-distributed tobacco-adapted form, closely related to M. persicae but with its own characteristic morphology. Morphological discriminants are given for the recognition of apterous and alate viviparae of this tobacco form, which is given the name M. nicotianae sp. n. Both M. persicae and M. nicotianae have 2n = 12, and both are frequently heterozygous for apparently the same autosomal translocation, which they must have acquired independently. M. nicotianae is presumably isolated from M. persicae by being permanently parthenogenetic. In Japan and Central Asia, however, aphids of the M. persicae group on tobacco can produce sexual morphs; the taxonomic status of these latter populations is still unclear. Multivariate comparison of European and North American populations of dark green aphids of the M. persicae group with 13 or 14 chromosomes in somatic cell nuclei instead of the normal 12, led to the conclusion that these all belong to one morphologically variable taxon, M. antirrhinii (Macchiati). Keys are provided to the apterous and alate virginoparae of the species of the M. persicae group in America.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atchley, W. R. (1977). Biological variability in the parthenogenetic grasshopper Warramaba virgo (Key) and its sexual relatives 1. The eastern Australian populations.—Evolution, Lawrence, Kans. 31, 782799.CrossRefGoogle ScholarPubMed
Blackman, R. L. & Paterson, A. J. C. (1986). Separation of Myzus (Nectarosiphon) antirrhinii (Macchiati) from Myzus (N.) persicae (Sulzer) and related species in Europe (Homoptera: Aphididae).—Syst. Entomol. 11, 267276.CrossRefGoogle Scholar
Blackman, R. L., Takada, H. & Kawakami, K. (1978). Chromosomal rearrangement involved in insecticide resistance of Myzus persicae.—Nature, Lond. 271, 450452.CrossRefGoogle Scholar
Brain, C. K. (1940). Host plants of the tobacco aphis (Myzus persicae).—Rhodesia agric. J. 37, 254255.Google Scholar
Brown, P. A. (1983). A note on Myzus (Sciamyzus) cymbalariae Stroyan, with a description of the male.—Jnl nat. Hist. 17, 875880.CrossRefGoogle Scholar
Bundzhe, Z. F. (1972). Tobacco pests and their control [in Russian].—8 pp. Alma Ata, Kaĭnar Press [cited in Kolesova et al., 1980].Google Scholar
Chamberlin, F. S. (1958). History and status of the green peach aphid as a pest of tobacco in the United States.—Tech. Bull. U.S. Dep. Agric. no. 1175, 12 pp.Google Scholar
Fusco, R. A. & Thurston, R. (1968). Anholocyclic overwintering of the green peach aphid in Kentucky.—J. econ. Ent. 61, 13831386.CrossRefGoogle Scholar
Ilharco, F. A. & van Harten, A. (1987). Systematics.—pp. 5177in Minks, A. K. & Harrewijn, P. (Eds.). Aphids. Their biology, natural enemies and control. Volume A.—450 pp. Amsterdam, Elsevier (World Crop Pests, 2A).Google Scholar
De Jong, J. K. (1929). Enkele resultaten van het onderzoek naar de biologie van de tabaksluis, Myzus persicae Sulzer.—Bull. Deli Proefstn Medan no. 28, 36 pp.Google Scholar
Kolesova, D. A., Kuznetsova, V. G. & Shaposhnikov, G. Kh. (1980). Clonal variability in peach aphid, Myzus persicae Sulz. (Homoptera, Aphididae) [in Russian].—Ent. Obozr. 59, 514–528. [English translation in Ent. Rev., Wash. 59, 2134].Google Scholar
Koziol, F. S. & Semtner, P. J. (1984). Extent of resistance to organophosphorus insecticides in field populations of the green peach aphid (Homoptera: Aphididae) infesting flue-cured tobacco in Virginia.—J. econ. Ent. 77, 13.CrossRefGoogle Scholar
Mordvilko, A. K. (1914). Faune de la Russie et des pays limitrophes. Insectes hémiptères (Insecta Hemiptera). Volume I. Aphidodea. Livraison 1.—236 + 9 pp. Petrograd.Google Scholar
Müller, F. P. (1958). Bionomische Rassen der Grünen Pfirsichblattlaus Myzus persicae (Sulz.).—Arch. Freunde NatGesch. Mecklenb. 4, 200233.Google Scholar
Müller, F. P. (1986). The rôle of subspecies in aphids for affairs of applied entomology.—Z. angew. Ent. 101, 295303.Google Scholar
Parker, E. D. Jr. (1979). Phenotypic consequences of parthenogenesis in Cnemidophorus lizards. II. Similarity of C. tesselatus to its sexual parental species.—Evolution, Lawrence, Kans. 33, 11671179.CrossRefGoogle ScholarPubMed
Takada, H. (1986). Genotypic composition and insecticide resistance of Japanese populations of Myzus persicae (Sulzer) (Hom., Aphididae).—Z. angew. Ent. 102, 1938.Google Scholar
Wolcott, G. N. (1952). Migrating aphids.—Science, N.Y. 116, 4344.CrossRefGoogle ScholarPubMed
Zagarovskiĭ, A. V. (1947). Leaf peach aphid (Myzodes persicae Sulzer) as a tobacco pest in Uzbekistan and measures for its control [in Russian].—45 pp. Frunze Zos, Vsesoyuznyĭ Institut Tabaka and Makhorki [cited in Kolesova et al., 1980].Google Scholar