Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T12:18:52.419Z Has data issue: false hasContentIssue false

New contributions towards the understanding of the phylogenetic relationships among economically important fruit flies (Diptera: Tephritidae)

Published online by Cambridge University Press:  09 March 2007

M.D. Segura
Affiliation:
Centro Nacional de Biotecnologia, Campus de la Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain
C. Callejas
Affiliation:
Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
M.P. Fernández
Affiliation:
Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario, Finca El Encín, 28800 Alcalá de Henares, Spain
M.D. Ochando*
Affiliation:
Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
*
*Fax: 34 91 394 4844 E-mail: dochando@bio.ucm.es

Abstract

Fruit flies (Diptera: Tephritidae) are a species-rich and economically important group. The phylogenetic relationships among the many taxa are still to be fully resolved and the monophyly of several groups is still to be confirmed. This paper reports a study of the phylogenetic relationships among 23 economically important tephritid species (representing several major lineages of the family) which examines the sequence of a region of mitochondrial DNA encompassing the cytb, tRNASer and ND1 genes. Substitutions characteristic of particular taxa were found that could help classify members of the family at any developmental stage. The trees obtained by the maximum parsimony, neighbour joining and maximum likelihood methods were generally compatible with present morphological classification patterns. However, the data reveal some characteristics of the phylogenetic relationships of this family that do not agree with present classifications. The results support the probable non-monophyletic nature of the subfamily Trypetinae and suggest that Bactrocera cucurbitae (Coquillet) is more closely related to the genus Dacus than to other species of Bactrocera.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avise, J.C. (1994) Molecular markers, natural history and evolution. New York, Chapman and Hall.CrossRefGoogle Scholar
Baliraine, F.N., Bonizzoni, M., Osir, E.O., Lux, S.A., Mulaa, F.J., Zheng, L., Gomulski, L.M., Gasperi, G. & Malacrida, A.R. (2003) Comparative analysis of microsatellite loci in four fruit fly species of the genus Ceratitis (Diptera: Tephritidae). Bulletin of Entomological Research 93, 110.CrossRefGoogle Scholar
Baliraine, F.N., Bonizzoni, M., Guglielmino, C.R., Osir, E.O., Lux, S.A., Mulaa, F.J., Gomulski, L.M., Zheng, L., Quilici, S., Gasperi, G. & Malacrida, A.R. (2004) Population genetics of the invasive African fruit fly species, Ceratitis rosa and Ceratitis fasciventris (Diptera: Tephritidae). Molecular Ecology 13, 683695.CrossRefGoogle Scholar
Clary, D.O. & Wolstenholme, D.R. (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization and genetic code. Journal of Molecular Evolution 22, 252271.CrossRefGoogle ScholarPubMed
Clary, D.O., Wahleitner, J.A. & Wolstenholme, D.R. (1983) Transfer RNA genes in Drosophila mitochondrial DNA: related 5' flanking sequences and comparisons to mammalian mitochondrial tRNA genes. Nucleic Acids Research 11, 24112455.CrossRefGoogle ScholarPubMed
De Meyer, M. (2000) Phylogeny of the genus Ceratitis (Dacinae: Ceratitidini). pp. 409428 in Aluja, M. & Norrbom, A.L. (eds) Fruit flies (Tephritidae): phylogeny and evolution of behaviour. Boca Raton, Florida CRC Press.Google Scholar
De Meyer, M. (2001a) Distribution patterns and host-plant relationships within the genus Ceratitis MacLeay (Diptera: Tephritidae) in Africa. Cimbebasia 17, 219228.Google Scholar
De Meyer, M. (2001b) On the identity of the Natal fruit fly, Ceratitis rosa (Diptera: Tephritidae). Bulletin d l'Institut Royal des Sciences Naturelles de Belgique, Entomologie 71, 5562.Google Scholar
Douglas, L.J. & Haymer, D.S. (2001) Ribosomal ITS1 polymorphisms in Ceratitis capitata and Ceratitis rosa (Diptera: Tephritidae). Annals of the Entomological Society of America 94, 726731.CrossRefGoogle Scholar
Drew, R.A.I. & Hancock, D.L. (2000) Phylogeny of the tribe Dacini (Dacinae) based on morphological, distributional and biological data. pp. 491504 in Aluja, M. & Norrbom, A.L. Fruit flies (Tephritidae): phylogeny and evolution of behaviour. Boca Raton, Florida CRC Press.Google Scholar
Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17, 368376.CrossRefGoogle ScholarPubMed
Felsenstein, J. (2001) PHYLIP (Phylogeny Inference Package) Department of Genetics, University of Washington, Seattle.Google Scholar
Fernández, P., Segura, D. & Ochando, M.D. (2001) Taxonomy and genetic differentiation of Ceratitis capitata (Wiedemann, 1824) (Diptera, Tephritidae) and Bactrocera oleae (Gmelin, 1790) (Diptera, Tephritidae) using molecular markers (RAPD–PCR). Boletin de la Real Sociedad Española de Historia Natural (Sec. Biol.) 96, 321329. in Spanish, English abstractGoogle Scholar
Fitch, W.M. (1971) Distinguishing homologous from analogous proteins. Systematic Zoology 20, 406416.CrossRefGoogle Scholar
Foote, R.H., Blanc, F.L. & Norrbom, A.L. (1993) Handbook of the fruit flies (Diptera: Tephritidae) of America North of Mexico Ithaca, New York Comstock Publishing AssociatesGoogle Scholar
Han, H.Y. (2000) Molecular phylogenetic study of the tribe Trypetini (Diptera: Tephritidae), using mitochondrial 16S ribosomal DNA sequences. Biochemical Systematics and Ecology 28, 501513.CrossRefGoogle ScholarPubMed
Han, H.Y. & McPheron, B.A. (1994) Phylogenetic study of selected tephritid flies (Insecta: Diptera: Tephritidae) using partial sequences of the nuclear 18S ribosomal DNA. Biochemical Systematics and Ecology 22, 447457.CrossRefGoogle Scholar
Han, H.Y. & McPheron, B.A. (1997) Molecular phylogenetic study of Tephritidae (Insecta: Diptera) using partial sequences of the mitochondrial 16S ribosomal DNA. Molecular Phylogenetics and Evolution 7, 1732.CrossRefGoogle ScholarPubMed
Han, H.Y. & McPheron, B.A. (2000) Nucleotide sequence data as a tool to test phylogenetic relationships among higher groups of Tephritidae: a case of study using mitochondrial ribosomal DNA. pp. 115132 in Aluja, M. & Norrbom, A.L. (eds) Fruit flies (Tephritidae): phylogeny and evolution of behaviour. Boca Raton, Florida CRC Press.Google Scholar
Jamnongluk, W., Baimai, V. & Kittayapong, P. (2003a) Molecular evolution of tephritid fruit flies in the genus Bactrocera based on the cytochrome oxidase I gene. Genetica 119, 1925.CrossRefGoogle ScholarPubMed
Jamnongluk, W., Baimai, V. & Kittayapong, P. (2003b) Molecular phylogeny of tephritid fruit flies in the Bactrocera tau complex using the mitochodrial COI sequences. Genome 46, 112118.CrossRefGoogle Scholar
Kakouli-Duarte, T., Casey, D.G. & Burnell, A.M. (2001) Development of a diagnostic DNA probe for the fruit flies Ceratitis capitata and Ceratitis rosa. Journal of Economic Entomology 94, 989997.CrossRefGoogle ScholarPubMed
Kim, J. (1993) Improving the accuracy of phylogenetic estimation by combining different methods. Systematic Biology 42, 331340.CrossRefGoogle Scholar
Korneyev, V.A. (2000) Phylogenetic relationships among higher groups of Tephritidae. pp. 73113 in Aluja, M., Norrbom, A.L. (eds) Fruit flies (Tephritidae): phylogeny and evolution of behaviour. Boca Raton, Florida, CRC Press.Google Scholar
Kumar, S., Tamura, K., Jacobsen, I.B. & Nei, M. (2001) MEGA (Molecular Evolutionary Genetics Analysis) Tempe Arizona State UniversityGoogle Scholar
Malacrida, A.R., Guglielmino, C.R., D'Adamo, P., Torti, C., Marinoni, F. & Gasperi, G. (1996) Allozyme divergence and phylogenetic relationships among species of tephritid flies. Heredity 76, 592602.CrossRefGoogle Scholar
McPheron, B.A. & Han, H.Y. (1997) Phylogenetic analysis of North American Rhagoletis (Diptera: Tephritidae) and related genera using mitochondrial DNA sequence data. Molecular Phylogenetics and Evolution 7, 116.CrossRefGoogle ScholarPubMed
McPheron, B.A., Han, H.Y., Silva, J.G. & Norrbom, A.L. (2000) Phylogeny of the genera Anastrepha and Toxotrypana (Trypetinae: Toxotrypanini) based upon 16S rRNA mitochondrial DNA sequences Fruit flies (Tephritidae): phylogeny and evolution of behaviour 343 – 361 Aluja M. Norrbom A.L. Boca Raton, Florida CRC PressCrossRefGoogle Scholar
Morrow, J., Scott, L., Congdon, B., Yeates, D., Fromer, M. & Sved, J. (2000) Close genetic similarity between two sympatric species of tephritid fruit flies reproductively isolated by mating time. Evolution: International Journal of Organic Evolution 54, 899910.Google ScholarPubMed
Muraji, M. & Nakahara, S. (2001) Phylogenetic relationships among fruit flies, Bactrocera (Diptera, Tephritidae), based on the mitochondrial rDNA sequences. Insect Molecular Biology 10, 549559.CrossRefGoogle ScholarPubMed
Norrbom, A.L., Zucchi, R.A. & Hernández-Ortiz, V. (2000) Phylogeny of the genera Anastrepha and Toxotrypana based on morphology. pp. 299342 in Aluja, M. & Norrbom, A.L. Fruit flies (Tephritidae): phylogeny and evolution of behaviour. Boca Raton, Florida, CRC Press.Google Scholar
Reyes, A., Linacero, R. & Ochando, M.D. (1997) Molecular genetics and integrated control: a universal genomic DNA integrated method for PCR, RAPD, restriction and Southern analysis. IOBC wprs Bulletin 20, 274284.Google Scholar
Saitou, N. & Nei, M. (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google Scholar
Salazar, M., Theoduloz, C., Vega, A., Pobrete, F., González, E., Badilla, R.N. & Meza-Basso, L. (2002) PCR–RFLP identification of endemic Chilean species of Rhagoletis (Diptera: Tephritidae) attacking Solanaceae. Bulletin of Entomological Research 92, 337341.CrossRefGoogle ScholarPubMed
Simon, C., Frati, F., Beckenback, A., Crespi, B., Liu, H. & Flookal, P. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87 651701.CrossRefGoogle Scholar
Smith, P.T., Kambhampati, S. & Armstrong, K.A. (2003) Phylogenetic relationships among Bactrocera species (Diptera: Tephritidae) inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 26, 817.CrossRefGoogle ScholarPubMed
Swofford, D.L. (2001) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods) Sunderland, Massachusetts SinauerGoogle Scholar
Swofford, D.L., Olsen, G.J., Waddell, P.J. & Hillis, D.M. (1996) Phylogenetic inference. pp. 407514 in Hillis, D.M. & Moritz, C. (eds). Molecular systematics. Sunderland, Massachusetts, Sinauer Associates.Google Scholar
Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle ScholarPubMed
White, I.M. (2000) Morphological features of the tribe Dacini (Dacinae): their significance to behavior and classification. pp. 505533 in Aluja, M. & Norrbom, A.L. (eds) Fruit flies (Tephritidae): phylogeny and evolution of behaviour. Boca Raton, Florida, CRC Press.Google Scholar
White, I.M. & Elson-Harris, M. (1992) Fruit flies of economic significance; their identification and bionomics Wallingford Oxon, CAB InternationalCrossRefGoogle Scholar
Wolstenholme, D.R. & Clary, D.O. (1985) Sequence evolution of Drosophila mitochondrial DNA. Genetics 109, 725744.CrossRefGoogle ScholarPubMed