Article contents
A new look at thrips (Thysanoptera) mouthparts, their action and effects of feeding on plant tissue
Published online by Cambridge University Press: 10 July 2009
Abstract
To elucidate how thrips feed, the mouthparts of Limothrips cerealium (Hal.) were examined in dead specimens by scanning electron microscopy and plasma-ashing, and in living specimens by cinematography as individuals fed through a transparent membrane on clear liquid containing small polystyrene latex particles that made its flow visible. Close contact with the food substrate was maintained by the labral pad. The single mandible was used to pierce the membrane and was then withdrawn rapidly and replaced by the maxillary stylets, which formed a tube with either a terminal or sub-terminal opening into which food was drawn by cibarial pumping at 2–6 pulsations/s. Oscillations in the surrounding fluid caused by such pumping were detectable up to 58 μm from the maxillary opening. Feeding persisted from a few seconds to up to half an hour, and when complete the stylets were withdrawn either rapidly and together, or more gradually by sliding one against the other. Whole chloroplasts up to 6 μm in diameter were ingested even though the diameter of the maxillary tube was about 1 μm. The thrips consumed the contents of ruptured plant cells at about 8·5 × 1O-5 μl/min, equivalent to almost 12·5% of their body weight per hour. Probing and feeding removed the surface wax from leaves, and the cuticle was so exposed that it often wrinkled. Leaf cells beneath a pierced epidermal cell were usually emptied completely, and little seepage from the wounded tissue occurred after stylet withdrawal. After intensive feeding, many mesophyll cells were totally destroyed and others showed extreme plasmolysis; grana sacks were contorted and large starch grains formed due to desiccation. Above such internal damage the epidermal cells collapsed, and the outer cuticle wrinkled and appeared silvery before turning yellow and brown.
- Type
- Original Articles
- Information
- Copyright
- Copyright © Cambridge University Press 1984
References
- 94
- Cited by