Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-17T19:48:56.695Z Has data issue: false hasContentIssue false

Observations on the reproductive biology of Aedes (Ochlerotatus) fryeri (Theo.) (Diptera, Culicidae)

Published online by Cambridge University Press:  10 July 2009

Stephen M. Smith
Affiliation:
Department of Biology, University of Waterloo, Waterloo, CanadaN2L 3GI
Philip S. Corbet
Affiliation:
Department of Biology, University of Waterloo, Waterloo, CanadaN2L 3GI

Abstract

Aedes (Ochlerotatus) fryeri (Theo.) was found developing in saline pools on the coastal margins of coral islands near Dar es Salaam, Tanzania. Females were autogenous in the first ovarian cycle and anautogenous in the second ovarian cycle. The existence of autogeny was confirmed by examination of females reared from field-collected pupae and of the age structure of the population of females landing and biting. All females receiving carbohydrate and most females receiving only water as adults exhibited autogeny; only parous females were caught attempting to take blood. Water-fed females (and to a lesser extent, carbohydrate-fed females) showed a high incidence of follicular regression in the first gonotrophic cycle. The possible adaptive significance of autogeny in A. fryeri is briefly discussed.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albanese, M., Bruno Smiraglia, C. & Lavagnino, A. (1971). Autogenesi in Aedes detritus e Aedes mariae di Sicilia.—Riv. Parassit. 32, 137139.Google Scholar
Bellamy, R. E. & Bracken, G. K. (1971). Quantitative aspects of ovarian development in mosquitoes.—Can. Ent. 103, 763773.CrossRefGoogle Scholar
Chinaev, P. P. (1964). [On the autogenous development of exophilous mosquitoes in Uzbekistan.]—Zool. Zh. 43, 939940. [In Russian]Google Scholar
Christophers, S. R. (1911). The development of the egg follicle in anophelines.—Paludism no. 2, 7388.Google Scholar
Clements, A. N. (1963). The physiology of mosquitoes.—393 pp. Oxford, Pergamon Press.Google Scholar
Cogan, B. H., Hudson, A. M. & Shaffer, J. C. (1971). Preliminary observations on the affinities and composition of the insect fauna of Aldabra.—Phil. Trans. R. Soc. (B) 260, 315325.Google Scholar
Corbet, P. S. (1967). Facultative autogeny in arctic mosquitoes.—Nature, Lond. 215, 662663.Google Scholar
Corbet, P. S. & Smith, S. M. (1974). Diel periodicities of landing of nulliparous and parous Aedes aegypti (L.) at Dar es Salaam, Tanzania (Diptera, Culicidae).—Bull. ent. Res. 64, 111121.CrossRefGoogle Scholar
Detinova, T. S. (1962). Age-grouping methods in Diptera of medical importance with special reference to some vectors of malaria.—216 pp. Monograph Ser. W.H.O. no. 47.Google ScholarPubMed
Dobrotworsky, N. V. (1954). The Culex pipiens group in south-eastern Australia. III. Autogeny in Culex pipiens form molestus.—Proc. Linn. Soc. N.S.W. 79, 193195.Google Scholar
Downes, J. A. (1962). What is an arctic insect?Can. Ent. 94, 143162.Google Scholar
Downes, J. A. (1964). Arctic insects and their environment.—Can. Ent. 96, 279307.CrossRefGoogle Scholar
Downes, J. A. (1965). Adaptations of insects in the Arctic.—A. Rev. Ent. 10, 257274.CrossRefGoogle Scholar
Downes, J. A. (1969). The swarming and mating flight of Diptera.—A. Rev. Ent. 14, 271298.CrossRefGoogle Scholar
Haeger, J. S. & Phinizee, J. (1959). The biology of the crabhole mosquito, Deinocerites cancer Theobald.—Rep. Fla Anti-mosq. Ass. 30, 3437.Google Scholar
Haeger, J. S. & Provost, M. W. (1965). Colonization and biology of Opifex fuscus.—Trans. R. Soc. N.Z. 6, 2131.Google Scholar
Hopkins, G. H. E. (1936). Mosquitoes of the Ethiopian Region. I. Larval bionomics of mosquitoes and taxonomy of Culicine larvae.—250 pp. London, British Museum (Natural History).Google Scholar
Hopkins, G. H. E. (1952). Mosquitoes of the Ethiopian Region. I. Larval bionomics of mosquitoes and taxonomy of Culicine larvae. 2nd edn.—355 pp. London, British Museum (Natural History).Google Scholar
Hudson, A. (1970). Factors affecting egg maturation and oviposition by autogenous Aedes atropalpus (Diptera: Culicidae).—Can. Ent. 102, 939949.CrossRefGoogle Scholar
Kirk, H. B. (1923). Notes on the mating-habits and early life-history of the culicid Opifex fuscus Hutton.—Trans. N.Z. Inst. 54, 400406.Google Scholar
Laurence, B. R. (1964). Autogeny in Aedes (Finlaya) togoi Theobald (Diptera, Culicidae).—J. Insect Physiol. 10, 319331.CrossRefGoogle Scholar
Lea, A. O. & Lum, P. T. M. (1959). Autogeny in Aedes taeniorhynchus (Wied.).—J. econ. Ent. 52, 356357.Google Scholar
Lien, J. C. (1960). Laboratory culture of Aedes (Finlaya) togoi (Theobald), 1907, and measurements of its susceptibility to insecticides.—Entomologia exp. appl. 3, 267282.CrossRefGoogle Scholar
Lumsden, W. H. R. (1955). Entomological studies, relating to yellow fever epidemiology, at Gede and Taveta, Kenya.—Bull. ent. Res. 46, 149183.CrossRefGoogle Scholar
Mattingly, P. F. (1963). New and remarkable Aedes (Diptera: Culicidae) from Africa.—Proc. R. ent. Soc. Lond. (B) 32, 165170.Google Scholar
O'Meara, G. F. & Craig, G. B., Jr, . (1969). Monofactorial inheritance of autogeny in Aedes atropalpus.—Mosquito News 29, 1422.Google Scholar
Omori, N. & Ito, S. (1962). On the autogeny of Aedes togoi in NagasakiJap. J. sanit. Zool. 13, 169.Google Scholar
Provost, M. W. & Haeger, J. S. (1967). Mating and pupal attendance in Deinocerites cancer and comparisons with Opifex fuscus (Diptera: Culicidae).—Ann. ent. Soc. Am. 60, 565574.CrossRefGoogle Scholar
Smith, S. M. (1970). The biting flies of the Baker Lake region, Northwest Territories (Diptera: Culicidae and Simuliidae).—Ph.D. Thesis, University of Manitoba, Winnipeg.Google Scholar
Smith, S. M. & Brust, R. A. (1970). Autogeny and stenogamy of Aedes rempeli (Diptera: Culicidae) in arctic Canada.—Can. Ent. 102, 253256.CrossRefGoogle Scholar
Spielman, A. (1971). Bionomics of autogenous mosquitoes.—A. Rev. Ent. 16, 231248.Google Scholar
Stone, A., Knight, K. L. & Starcke, H. (1959). A synoptic catalog of the mosquitoes of the world (Diptera, Culicidae).—358 pp. Washington, The Entomological Society of America. (Thomas Sag Foundation, Vol. 6)Google Scholar
Thomas, V. & Leng, Y. P. (1972). The inheritance of autogeny in Aedes (Finlaya) togoi (Theobald) from Malaysia and some aspects of its biology.—Southeast Asian J. trop. Med. publ. Hlth 3, 163174.Google ScholarPubMed
van Someren, E. C. C. (1972). On the status of Aedes (Ochlerotatus) fryeri (Theobald) and Aedes (Ochlerotatus) mombasaensis Mattingly.—Mosq. Syst. 4, 90.Google Scholar
van Someren, E. C. C. & Furlong, M. (1964). The biting habits of Aedes (Skusea) pembaensis Theo. and some other mosquitoes of Faza, Pate Island, East Africa.—Bull. ent. Res. 55, 97124.Google Scholar
van Someren, E. C. C, Heisch, R. B. & Furlong, M. (1958). Observations on the behaviour of some mosquitoes of the Kenya coast.—Bull. ent. Res. 49, 643660.CrossRefGoogle Scholar
Vermeil, C. (1953). De la reproduction par autogénèse chez Aedes (O.) detritus Haliday.—Bull. Soc. Path. exot. 46, 971973.Google Scholar
Vinogradova, E. B. (1965). [Autogenous development of the ovaries in blood-sucking mosquitoes.]—Zool. Zh. 44, 210219. [In Russian]Google Scholar
Woodhill, A. R. (1936). Observations and experiments on Aëdes concolor, Tayl. (Dipt. Culic.).—Bull. ent. Res. 27, 633648.Google Scholar
Zavortink, T. J. (1972). Mosquito studies (Diptera, Culicidae). XXVIII. The New World species formerly placed in Aedes (Finlaya).—Contr. Am. entomol. Inst. 8 (3), 1206.Google Scholar