Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T06:00:36.709Z Has data issue: false hasContentIssue false

The potential distribution of the Russian wheat aphid (Diuraphis noxia): an updated distribution model including irrigation improves model fit for predicting potential spread

Published online by Cambridge University Press:  18 April 2018

G.A. Avila*
Affiliation:
The New Zealand Institute for Plant & Food Research Limited, Mt Albert Research Centre, Private Bag 92169, Mt Albert, Auckland 1142, New Zealand Better Border Biosecurity, Wellington, New Zealand
M. Davidson
Affiliation:
The New Zealand Institute for Plant & Food Research Limited, Christchurch Mail Centre, Christchurch 8140, Private Bag 4704, New Zealand
M. van Helden
Affiliation:
South Australian Research and Development Institute, Waite Campus, Adelaide, SA, Australia
L. Fagan
Affiliation:
Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151, Australia
*
*Author for correspondence Phone: +6499257198 Fax: +6499257001 E-mail: Gonzalo.Avila@plantandfood.co.nz

Abstract

Diuraphis noxia (Kurdjumov), Russian wheat aphid, is one of the world's most invasive and economically important agricultural pests of wheat and barley. In May 2016, it was found for the first time in Australia, with further sampling confirming it was widespread throughout south-eastern regions. Russian wheat aphid is not yet present in New Zealand. The impacts of this pest if it establishes in New Zealand, could result in serious control problems in wheat- and barley-growing regions. To evaluate whether D. noxia could establish populations in New Zealand we used the climate modelling software CLIMEX to locate where potential viable populations might occur. We re-parameterised the existing CLIMEX model by Hughes and Maywald (1990) by improving the model fit using currently known distribution records of D. noxia, and we also considered the role of irrigation into the potential spread of this invasive insect. The updated model now fits the current known distribution better than the previous Hughes and Maywald CLIMEX model, particularly in temperate and Mediterranean areas in Australia and Europe; and in more semi-arid areas in north-western China and Middle Eastern countries. Our model also highlights new climatically suitable areas for the establishment of D. noxia, not previously reported, including parts of France, the UK and New Zealand. Our results suggest that, when suitable host plants are present, Russian wheat aphid could establish in these regions. The new CLIMEX projections in the present study are useful tools to inform risk assessments and target surveillance and monitoring efforts for identifying susceptible areas to invasion by Russian wheat aphid.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aalbersberg, Y.K., Toit, F.D., Westhuizen, M.C.V.D. & Hewitt, P.H. (1987) Development rate, fecundity and lifespan of apterae of the Russian wheat aphid, Diuraphis noxia (Mordvilko) (Hemiptera: Aphididae), under controlled conditions. Bulletin of Entomological Research 77, 629635.Google Scholar
Anonymous (2016). MPI (Ministry for Primary Industries) Emerging Risks System for Biosecurity. Stakeholder Report, 10th June–9th September 2016.Google Scholar
Anonymous (2017). UK Risk Register Details for Diuraphis noxia. Available online at https://secure.fera.defra.gov.uk/phiw/riskRegister/viewPestRisks.cfm?cslref=19675 (accessed 26 October 2017).Google Scholar
Araya, J.E. & Fereres, A. (1991) Cereal aphid survival under flooding conditions/Überleben von Getreideblattläusen unter Überflutungsbedingungen. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection 98, 168173.Google Scholar
Archer, T.L., Bynum, E.D., Onken, A.B. & Wendt, C.W. (1995) Influence of water and nitrogen fertilizer on biology of the Russian wheat aphid (Homoptera: Aphididae) on wheat. Crop Protection 14, 165169.Google Scholar
Armstrong, J.S., Porter, M.R. & Peairs, F.B. (1991) Alternate hosts of the Russian wheat aphid (Homoptera: Aphididae) in north-eastern Colorado. Journal of Economic Entomology 84, 16911694.Google Scholar
Baker, R.H.A., Sansford, C.E., Jarvis, C.H., Cannon, R.J.C., MacLeod, A. & Walters, K.F.A. (2000) The role of climatic mapping in predicting the potential geographical distribution of non-indigenous pests under current and future climates. Agriculture, Ecosystems and Environment 82, 5771.Google Scholar
Bosque-Pérez, N., Johnson, J., Schotzko, D. & Unger, L. (2002) Species diversity, abundance, and phenology of aphid natural enemies on spring wheats resistant and susceptible to Russian wheat aphid. BioControl 47, 667684.Google Scholar
Brewer, M.J., Donahue, J.D. & Burd, J.D. (2000) Seasonal abundance of Russian wheat aphid (Homoptera: Aphididae) on noncultivated perennial grasses. Journal of the Kansas Entomological Society 73, 8494.Google Scholar
Burd, J.D. & Burton, R.L. (1992) Characterization of plant damage caused by Russian wheat aphid (Homoptera: Aphididae). Journal of Economic Entomology 85, 20172022.Google Scholar
CABI (2017) Invasive Species Compendium: Datasheets, maps, images, abstracts and full text on invasive species of the world. Available online at http://www.cabi.org/isc/.Google Scholar
Champion, P.D. (2012) Common Grasses, Sedges and Rushes of New Zealand. New Zealand Plant Protection Society, Christchurch, New Zealand.Google Scholar
Close, R.C. & Tomlinson, A.I. (1975) Dispersal of the grain aphid Macrosiphum miscanthi from Australia to New Zealand. New Zealand Entomologist 6, 6265.Google Scholar
Clua, A., Castro, A.M., Ramos, S., Gimenez, D.O., Vasicek, A., Chidichimo, H.O. & Dixon, A.F.G. (2004) The biological characteristics and distribution of the greenbug, Schizaphis graminum, and Russian wheat aphid, Diuraphis noxia (Hemiptera: Aphididae), in Argentina and Chile. European Journal of Entomology 101, 193198.Google Scholar
Department for Environment Food and Rural Affairs UK (2000) Maps of crop areas in 2000 and 2010 across England. Available online at http://webarchive.nationalarchives.gov.uk/20130123162956/http://:/www.defra.gov.uk/statistics/files/defra-stats-foodfarm-landuselivestock-june-detailedresults-cropmaps111125.pdf.Google Scholar
Dolatti, L., Ghareyazie, B., Moharramipour, S. & Noori-Daloii, M.R. (2005) Evidence for regional diversity and host adaptation in Iranian populations of the Russian wheat aphid. Entomologia Experimentalis et Applicata 114, 171180.Google Scholar
Edgar, E. & Connor, H. (2000) Flora of New Zealand: Gramineae. Lincoln, New Zealand, Manaaki Whenua Press. Available online at http://floraseries.landcareresearch.co.nz/pages/Index.aspx.Google Scholar
Edwards, O.R. & Migui, S. (2005) Russian wheat aphid – threat specific contingency plan prepared for Plant Health Australia.Google Scholar
Fagan, L.L., McLachlan, A., Till, C.M. & Walker, M.K. (2010) Synergy between chemical and biological control in the IPM of currant- lettuce aphid (Nasonovia ribisnigri) in Canterbury, New Zealand. Bulletin of Entomological Research 100, 217223.Google Scholar
Fouché, A., Verhoeven, R.L., Hewitt, P.H., Walters, M.C., Kriel, C.F. & Jager, J.D. (1984) Russian aphid (Diuraphis noxia) feeding damage on wheat, related cereals and a Bromus grass species. Technical communication – South Africa, Department of Agriculture 191, 2233.Google Scholar
Guisan, A. & Thuiller, W. (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters 8, 9931009.Google Scholar
Halbert, S.E. & Stoetzel, M.B. (1998) Historical overview of the Russian wheat aphid (Homoptera: Aphididae). pp. 166182. in Quisenberry, S.S. and Peairs, F.B. (Eds) Proceedings of Response Model for an Introduced Pest – The Russian Wheat Aphid, Entomological Society of America. Lanham, Maryland, Entomological Society of America, Thomas Say Publications in Entomology.Google Scholar
Heddle, T. & van Helden, M. (2016) Parasitoids of the Russian wheat aphid, Diuraphis noxia, in Australia. p. 154 in Proceedings of the Combined Australian Entomological Society and New Zealand Entomological Society Conference. Melbourne, Australia: Australian Entomological Society, New Zealand Entomological Society.Google Scholar
Hewitt, P.H., Niekerk, G.J.J.V., Walters, M.C., Kriel, C.F. & Fouché, A. (1984) Aspects of the ecology of the Russian wheat aphid, Diuraphis noxia, in the Bloemfontein district. I. The colonization and infestation of sown wheat, identification of summer hosts and cause of infestation symptoms. Technical Communication, Department of Agriculture, South Africa 191, 313.Google Scholar
Hopper, K.R., Coutinot, D., Chen, K., Kazmer, D.J., Mercadier, G., Halbert, S.E., Miller, R.H., Pike, K.S. & Tanigoshi, L.K. (1998) Exploration for natural enemies to control Diuraphis noxia (Homoptera: Aphididae) in the United States. pp. 166182 in Quisenberry, S.S. and Peairs, F.B. (Eds) Proceedings of Response Model for an Introduced Pest – The Russian Wheat Aphid, Entomological Society of America. Lanham, Maryland, Entomological Society of America, Thomas Say Publications in Entomology.Google Scholar
Hughes, R.D. & Maywald, G.F. (1990) Forecasting the favourableness of the Australian environment for the Russian wheat aphid, Diuraphis noxia (Homoptera: Aphididae), and its potential impact on Australian wheat yields. Bulletin of Entomological Research 80, 165175.Google Scholar
Kindler, S.D. & Springer, T.L. (1989) Alternate hosts of Russian wheat aphid (Homoptera: Aphididae). Journal of Economic Entomology 82, 13581362.Google Scholar
Kovalev, O.V., Poprawski, T.J., Stekolshchikov, A.V., Vereshchagina, A.B. & Gandrabur, S.A. (1991) Diuraphis Aizenberg (Hom., Aphididae): key to apterous viviparous females, and review of Russian language literature on the natural history of Diuraphis noxia (Kurdjumov, 1913). Journal of Applied Entomology 112, 425436.Google Scholar
Kriel, C.F., Hewitt, P.H. & Westhuizen, M.C. (1986) The Russian wheat aphid Diuraphis noxia (Mordvilko): population dynamics and effect on grain yield in the western orange free State. Journal of the Entomological Society of Southern Africa 49, 317335.Google Scholar
Kriticos, D.J., Sutherst, R.W., Brown, J.R., Adkins, S.W. & Maywald, G.F. (2003) Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. Journal of Applied Ecology 40, 111124.Google Scholar
Kriticos, D.J., Potter, K.J.B., Alexander, N.S., Gibb, A.R. & Suckling, D.M. (2007) Using a pheromone lure survey to establish the native and potential distribution of an invasive Lepidopteran, Uraba lugens. Journal of Applied Ecology 44, 853863.Google Scholar
Kriticos, D.J., Webber, B.L., Leriche, A., Ota, N., Macadam, I., Bathols, J. & Scott, J.K. (2012) Climond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution 3, 5364.Google Scholar
Kriticos, D.J., Leriche, A., Palmer, D.J., Cook, D.C., Brockerhoff, E.G., Stephens, A.E.A. & Watt, M.S. (2013) Linking climate suitability, spread rates and host-impact when estimating the potential costs of invasive pests. PLoS ONE 8, e54861.Google Scholar
Kriticos, D.J., Maywald, G.F., Yonow, T., Zurcher, E.J., Herrmann, N.I. & Sutherst, R.W. (2015) CLIMEX Version 4: Exploring the Effects of Climate on Plants, Animals and Diseases. Canberra, CSIRO.Google Scholar
Liu, X., Marshall, J.L., Michael Smith, P., Stary, P., Stary, O., Edwards, G., Puterka, M., Dolatti, J., El Bouhssini, J., Malinga, J. & Lage, J. (2010) Global phylogenetics of Diuraphis noxia (Hemiptera: Aphididae), an invasive aphid species: evidence for multiple invasions into North America. Journal of Economic Entomology 103, 958965.Google Scholar
Merrill, S.C. & Peairs, F.B. (2012) Quantifying Russian wheat aphid pest intensity across the great plains. Environmental Entomology 41, 15051515.Google Scholar
Merrill, S.C., Holtzer, T.O. & Peairs, F.B. (2009 a) Diuraphis noxia reproduction and development with a comparison of intrinsic rates of increase to other important small grain aphids: a meta-analysis. Environmental Entomology 38, 10611068.Google Scholar
Merrill, S.C., Holtzer, T.O., Peairs, F.B. & Lester, P.J. (2009 b) Modeling spatial variation of Russian wheat aphid overwintering population densities in Colorado winter wheat. Journal of Economic Entomology 102, 533541.Google Scholar
Mezey, Á. & Szalay-Marzsó, L. (2001) Host plant preference of Diuraphis noxia (Kurdj.) (Hom., Aphididae). Anzeiger für Schädlingskunde/Journal of Pest Science 74, 1721.Google Scholar
Moir, M., Szito, A., Botha, J.H. & Grimm, M. (2008) Russian wheat aphid, Diuraphis noxia, pest datasheet/pest risk review. Technical report for the cereal grains industry, March 2008.Google Scholar
Morrison, W.P. & Peairs, F.B. (1998) Response model concept and economic impact. pp. 166182 in Quisenberry, S.S. and Peairs, F.B. (Eds). Proceedings of Response Model for an Introduced Pest – The Russian Wheat Aphid, Entomological Society of America. Lanham, Maryland, Entomological Society of America, Thomas Say Publications in Entomology.Google Scholar
Nicholson, S.J., Nickerson, M.L., Dean, M., Song, Y., Hoyt, P.R., Rhee, H., Kim, C. & Puterka, G.J. (2015) The genome of Diuraphis noxia, a global aphid pest of small grains. BMC Genomics 16, 429.Google Scholar
NIWA (National Institute of Water and Atmosphere) (2017) Mean monthly rainfall (mm) 1981–2010. Available online at https://www.niwa.co.nz/education-and-training/schools/resources/climate/meanrain.Google Scholar
Pardey, P.G., Beddow, J.M., Kriticos, D.J., Hurley, T.M., Pardey, R.F., Beddow, E., Hurley, R.W., Pardey, J.J., Beddow, D., Kriticos, D., Hurley, D., Burdon, D., Pardey, D., Park, D., Duveiller, D., Hodson, D. & Sutherst, D. (2013) Right-sizing stem-rust research. Science 340, 147148.Google Scholar
Pike, K.S., Star, P., Miller, T., Allison, D., Boydston, L., Graf, G. & Gillespie, R. (1997) Small grain aphid parasitoids (Hymenoptera: Aphelinidae and Aphidiidae) of Washington: distribution, relative abundance, seasonal occurrence; and key to known North American species. Environmental Entomology 26, 12991311.Google Scholar
Plant Health Australia (2012) Threat specific contingency plan – Russian wheat aphid (Diuraphis noxia). Available online at http://www.planthealthaustralia.com.au/wp-content/uploads/2013/01/Russian-wheat-aphid-CP-2012.pdf.Google Scholar
Plant Health Australia (2017) Russian Wheat Aphid (Diuraphis noxia). Available online at https://portal.biosecurityportal.org.au/rwa/Documents/Russian%20Wheat%20Aphid%20Distribution%20Map.pdf (accessed 14 June 2017).Google Scholar
Portmann, F.T., Siebert, S. & Döll, P. (2010) MIRCA2000 – global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles 24, 124.Google Scholar
Potter, K.J.B., Kriticos, D.J., Watt, M.S. & Leriche, A. (2009) The current and future potential distribution of Cytisus scoparius: a weed of pastoral systems, natural ecosystems and plantation forestry. Weed Research 49, 271282.Google Scholar
Puterka, G.J., Black, W.C. IV, Steiner, W.M. & Burton, R.L. (1993) Genetic variation and phylogenetic relationships among worldwide collections of the Russian wheat aphid, Diuraphis noxia (Mordvilko), inferred from allozyme and RAPD- PCR markers. Heredity 70, 604618.Google Scholar
Ricci, M., Cakir, M. & Castro, A.M. (2012) Diuraphis noxia (Hemiptera: Aphididae): Identificación de los biotipos presentes en poblaciones argentinas. Revista de la Sociedad Entomológica Argentina 71, 105113.Google Scholar
Saavedra, M.C., Avila, G.A., Withers, T.M. & Holwell, G.I. (2015) The potential global distribution of the bronze bug Thaumastocoris peregrinus Carpintero and Dellapé (Hemiptera: Thaumastocoridae). Agricultural and Forest Entomology 17, 375388.Google Scholar
Shufran, K.A., Kirkman, L.R. & Puterka, G.J. (2007) Absence of mitochondrial DNA sequence variation in Russian wheat aphid (Hemiptera: Aphididae) populations consistent with a single introduction into the United States. Journal of the Kansas Entomological Society 80, 319326.Google Scholar
Siebert, S., Döll, P., Hoogeveen, J., Faures, J.M., Frenken, K. & Feick, S. (2005) Development and validation of the global map of irrigation areas. Hydrology and Earth System Sciences 9, 535547.Google Scholar
Smith, C.M., Belay, T., Stauffer, C., Stary, P., Kubeckova, I. & Starkey, S. (2004) Identification of Russian wheat aphid (Homoptera: Aphididae) populations virulent to the Dn4 resistance gene. Journal of Economic Entomology 97, 11121117.Google Scholar
South Australia Research and Development Institute (2016) Cereal aphid observations for spring 2016. Available online at http://pir.sa.gov.au/research/services/reports_and_newsletters/cereal_aphid_observations.Google Scholar
Starý, B.P. (2000) On-going expansion of Russian wheat aphid, Diuraphis noxia (Kurdj.) in central Europe (Horn.: Aphididae). Anzeiger für Schädlingskunde / Journal of Pest Science 73, 7578.Google Scholar
Stufkens, M.W. & Farrell, J.A. (1989) Metopolophium dirhodum (Walker), rose-grain aphid (Homoptera: Aphididae). pp. 105109 in Cameron, P.J., Hill, R.L., Bain, J. & Thomas, W.P. (Eds) A Review of Biological Control of Invertebrate Pests and Weeds in New Zealand 1874 to 1987. Wallingford, Oxon, UK, CAB International.Google Scholar
Sutherst, R.W. & Maywald, G. (2005) A climate model of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae): implications for invasion of new regions, particularly Oceania. Environmental Entomology 34, 317335.Google Scholar
Sutherst, R.W. & Maywald, G.F. (1985) A computerised system for matching climates in ecology. Agriculture, Ecosystems and Environment 13, 281299.Google Scholar
Tadele, F.C. (2015) A review on distribution, biology and management practice of Russian wheat aphid Diuraphis noxia (Mordvilko) (Hemiptera:Aphididae), in Ethiopia. Journal of Biology, Agriculture and Healthcare 5, 7081.Google Scholar
Taylor, S. & Kumar, L. (2012) Potential distribution of an invasive species under climate change scenarios using CLIMEX and soil drainage: a case study of Lantana camara L. in Queensland, Australia. Journal of Environmental Management 114, 414422.Google Scholar
Tazerouni, Z., Talebi, A.A. & Ehsan, R. (2013) Temperature thresholds and thermal requirements for development of Iranian Diuraphis noxia population (Hemiptera: Aphididae) on wheat. Zoology and Ecology 23, 323329.Google Scholar
Thomas, W.P. (1989) Aphididae, aphids (Homoptera). pp. 5566 in Cameron, P.J., Hill, R.L., Bain, J. and Thomas, W.P. (Eds) A Review of Biological Control of Invertebrate Pests and Weeds in New Zealand 1874 to 1987. Wallingford, Oxon, UK, CAB International.Google Scholar
Turanli, F., Jankielsohn, A., Morgounov, A. & Cakir, M. (2012) The distribution of Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae) in Turkey. African Journal of Agricultural Research 7, 53965404.Google Scholar
Ward, D. (2007) Modelling the potential geographic distribution of invasive ant species in New Zealand. Biological Invasions 9, 723735.Google Scholar
Watt, M.S., Kriticos, D.J., Alcaraz, S., Brown, A.V. & Leriche, A. (2009) The hosts and potential geographic range of Dothistroma needle blight. Forest Ecology and Management 257, 15051519.Google Scholar
Watt, M.S., Kriticos, D.J., Lamoureaux, S.L. & Bourdôt, G.W. (2011) Climate change and the potential global distribution of serrated Tussock (Nassella trichotoma). Weed Science 59, 538545.Google Scholar
Wharton, T.N. & Kriticos, D.J. (2004) The fundamental and realized niche of the Monterey pine aphid, Essigella californica (Essig) (Hemiptera: Aphididae): implications for managing softwood plantations in Australia. Diversity and Distributions 10, 253262.Google Scholar
Yazdani, M., Baker, G., DeGraaf, H., Henry, K., Hill, K., Kimber, B., Malipatil, M., Perry, M., Valenzuela, I. & Nash, M.A. (2017) First detection of Russian wheat aphid Diuraphis noxia Kurdjumov, 1913 (Hemiptera: Aphididae) from Australia: a major threat to cereal production. Austral Entomology, doi: 10.1111/aen.12292.Google Scholar
Yonow, T., Kriticos, D.J. & Medd, R.W. (2004) The potential geographic range of Pyrenophora semeniperda. Phytopathology 94, 805812.Google Scholar
Yonow, T., Kriticos, D.J., Ota, N., Van Den Berg, J. & Hutchison, W. (2017) The potential global distribution of Chilo partellus, including consideration of irrigation and cropping patterns. Journal of Pest Science 90, 459477.Google Scholar
Zhang, B., Edwards, O.R., Kang, L. & Fuller, S.J. (2012) Russian wheat aphids (Diuraphis noxia) in China: native range expansion or recent introduction? Molecular Ecology 21, 21302144.Google Scholar
Zhang, B., Edwards, O., Kang, L. & Fuller, S. (2014) A multi-genome analysis approach enables tracking of the invasion of a single Russian wheat aphid (Diuraphis noxia) clone throughout the New World. Molecular Ecology 23, 19401951.Google Scholar
Zhang, R., Liang, H., Ren, L. & Zhang, G. (2001) Induced life cycle transition from holocycly to anholocycly of the Russian wheat aphid (Homoptera: Aphididae). Science in China Series C – Life Sciences 44, 14.Google Scholar