Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T09:50:25.040Z Has data issue: false hasContentIssue false

Predicting the potential invasion suitability of regions to cassava lacebug pests (Heteroptera: Tingidae: Vatiga spp.)

Published online by Cambridge University Press:  19 December 2014

S.I. Montemayor*
Affiliation:
División Entomología, Museo de La Plata, Universidad Nacional de La Plata, Paseo del Bosque s/n, B1900FWA, La Plata, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina (CONICET)
P.M. Dellapé
Affiliation:
División Entomología, Museo de La Plata, Universidad Nacional de La Plata, Paseo del Bosque s/n, B1900FWA, La Plata, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina (CONICET)
M.C. Melo
Affiliation:
División Entomología, Museo de La Plata, Universidad Nacional de La Plata, Paseo del Bosque s/n, B1900FWA, La Plata, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina (CONICET)
*
*Author for correspondence Phone: 54 221 4257744 E-mail: smontemay@fcnym.unlp.edu.ar

Abstract

Cassava (Manihot esculenta Crantz) is one of the most important staple crops for small farmers in the tropics, feeding about 800 million people worldwide. It is currently cultivated in South and Central America, Africa and Asia. The genus Vatiga is widespread throughout the Neotropical region. Its species are sympatric and feed exclusively on cassava. The main objectives of this paper are: (1) to assess the potential distribution of Vatiga, one of the most relevant pests of cassava; (2) to project the resulting models onto the world; (3) to recognize areas with suitable and optimal climates (and thus, high probability) for future colonization, and (4) to compare this model with the harvested area of cassava analyzing the climatic variables required by both the host and the pest species. Species distribution models were built using Maxent (v3.3.3k) with bioclimatic variables from the WorldClim database in 2.5 arc min resolution across the globe. Our model shows that Vatiga has the potential to expand its current distribution into other suitable areas, and could invade other regions where cassava is already cultivated, e.g., Central Africa and Asia. Considering the results and the high host specificity of Vatiga, its recent appearance in Réunion Island (Africa) poses a serious threat, as nearby areas are potentially suitable for invasion and could serve as dispersal routes enabling Vatiga to reach the continent. The present work may help prevention or early detection of Vatiga spp. in areas where cassava is grown.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, J.M. & Edwards, P.J. (2010) Limits to the niche and range margins of alien species. Oikos 119, 13771386.Google Scholar
Alves, L.F.A., Bellon, P.P., Rheinheimer, A.R. & Pietrowski, V. (2012) First record of Beauveria bassiana (Hyphomycetes: Moniliales) on adults of Cassava Lace Bug Vatiga manihotae (Drake) (Hemiptera: Tingidae) in Brazil. Archivos do Instituto Biológico 79, 309311.CrossRefGoogle Scholar
Araújo, M.B. & Pearson, R.G. (2005) Equilibrium of species’ distributions with climate. Ecography 28, 693695.CrossRefGoogle Scholar
Bahn, V. & McGill, B.J. (2007) Can niche-based distribution models outperform spatial interpolation? Global Ecology and Biogeography 16, 733742.Google Scholar
Bellon, P.P., Wengrat, A.P.G.S., Kassab, S.O., Pietrowski, V. & Loureiro, E.S. (2012) Occurrence of Lace bug Vatiga illudens and Vatiga manihotae (Hemiptera: Tingidae) in Mato Grosso do Sul, midwestern Brazil. Anais da Academia Brasileira de Ciências 84, 703705.Google Scholar
Bellotti, A.C., Smith, L. & Lapointe, S.L. (1999) Recent advances in cassava pest management. Annual Review of Entomology 44, 343370.Google Scholar
Bomford, M., Kraus, F., Barry, S.C. & Lawrence, E. (2009) Predicting establishment success for alien reptiles and amphibians: a role for climate matching. Biological Invasions 11, 13873547.CrossRefGoogle Scholar
Broennimann, O., Treier, U.A., Müller-Schärer, H., Thuiller, W., Peterson, A.T. & Guisan, A. (2007) Evidence of climatic niche shift during biological invasion. Ecology Letters 10, 701709.Google Scholar
De Paula-Moraes, S.V., Vieira, E.A., Fialho, J. De F., Pontes, R.A. & Nunes, R.V. (2007) Eficiência de agrotóxicos no controle do percevejo-de-renda (Vatiga illudens Drake, 1922) (Hemiptera: Tingidae) em genótipos de mandioca indústria. Revista Raizes e Amidos Tropicais 3, 14.Google Scholar
Dormann, C.F. (2007) Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecology and Biogeography 16, 129138.Google Scholar
Elith, J., Kearney, M. & Phillips, S. (2010) The art of modeling range-shifting species. Methods in Ecology and Evolution 1, 330342.Google Scholar
FAO (2013). Save and Grow: Cassava. A guide to sustainable production intensification. Available online at http://www.fao.org/docrep/018/i3278e/i3278e.pdf Google Scholar
Fialho, J., Vieira, E.A., Paula-Moraes, S.V. & Junqueira, N.T.V. (2009) Economic damage caused by lacebug upon cassava root and foliage yield. Scientia Agraria 10, 151155.Google Scholar
Fialho, J.F., Oliveira, M.A.S. & Alves, R.T. (1994) Efeito do dano do percevejo de renda Vatiga illudens (Drake, 1922) sobre o rendimento da mandioca no Distrito Federal. p. 80 in Congresso Brasileiro De Mandioca, Salvador, Resumos congresso brasileiro de mandioca, Salvador, Sociedade Brasileira de Mandioca.Google Scholar
Fitzpatrick, M.C., Weltzin, J.F., Sanders, N.J. & Dunn, R.R.T. (2007) The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range? Global Ecology and Biogeography 16, 2433.Google Scholar
Fitzpatrick, M.C., Dunn, R.R. & Sanders, N.J. (2008) Data sets matter, but so do evolution and ecology. Global Ecology and Biogeography 17, 562565.CrossRefGoogle Scholar
Floerl, O., Inglis, G.R. & Roulston, H. (2013) Predicted effects of climate change on potential sources of non-indigenous marine species. Diversity and Distributions 19, 257267.Google Scholar
Froeschner, R.C. (1993) The neotropical lace bugs of the genus Vatiga (Heteroptera: Tingidae), pest of cassava: new synonymies and keys to species. Proceedings of the Biological Society of Washington 95, 457462.Google Scholar
Gelfand, A.E., Latimer, A., Wu, S. & Silander, J.A. (2006) Building statistical models to analyze species distributions pp. 7797 in Clark, J.S.Y. & Gelfand, A.E. (Eds) Hierarchical Modelling for the Environmental Sciences: Statistical Methods and Applications. Oxford, Oxford University Press.Google Scholar
Halbert, S. (2010) The Cassava Lace Bug, Vatiga illudens (Drake) (Hemiptera: Tingidae), A New Exotic Lace Bug in Florida. Florida Division of Plant Industry, Pest Alert, n. 1–2. Available online at http://www.freshfromflorida.com/Divisions-Offices/Plant-Industry/Plant-Industry-Publications/Pest-Alerts/Cassava-Lace-Bug Google Scholar
Hayes, K.R. & Barry, S.C. (2008) Are there any consistent predictors of invasion success? Biological Invasions 10, 483506.CrossRefGoogle Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 19651978.CrossRefGoogle Scholar
Kebede, F., Mohelman, P.D., Bekele, A. & Evangelista, P.H. (2014) Predicting seasonal habitat suitability for the critically endangered African wild ass in the Danakil, Ethiopia. African Journal of Ecology 1, 10.Google Scholar
Legendre, P. (1993) Spatial autocorrelation – trouble or new paradigm. Ecology 74, 16591673.Google Scholar
Leótard, G., Duputié, A., Kjellberg, F., Douzery, E.J.P., Debain, C., De Granville, J.J. & Mckey, D. (2009) Phylogeography and the origin of cassava: new insights from the northern rim of the Amazon basin. Molecular Phylogenetics and Evolution 53, 329334.Google Scholar
Monfreda, C., Ramankutty, N. & Foley, J.A. (2008) Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochemical Cycles 22, 119.CrossRefGoogle Scholar
Montemayor, S.I., Dellapé, P.M. & Melo, M.C. (2014) Geographical distribution modelling of the bronze bug: a worldwide invasion. Agricultural and Forest Entomology doi: 10.1111/afe.12088.Google Scholar
Moreira, M.A.B., Farías, A.R., Santos Alves, M.C. & Lemos De Carvalho, H.W. (2006) Ocorrência do percevejo-de-renda Vatiga illudens (Hemiptera: Tingidae) na cultura da mandioca no Estado do Rio Grande do Norte. Embrapa Tabuleiro Costeiros Comunicado Técnico 55, 14.Google Scholar
Neal, J.W. Jr. & Schaefer, C.W. (2000) Lace bugs (Tingidae) pp. 85137 in Schaefer, C.W. & Panizzi, A.R. (Eds) Heteroptera of Economic Importance. Boca Raton, CRC Press.Google Scholar
Oliveira, M.A.S., Fialho, J. De F., Alves, R.T., Oliveira, J.N.S. & Gomes, A.C. (2001) Dinâmica populacional do percevejo-de-renda (Vatiga illudens) na cultura da mandioca no Distrito Federal. Embrapa Cerrados Boletim de Pesquisa e Desenvolvimento n.3, p. 1–16.Google Scholar
Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231259.Google Scholar
Raes, N. & Ter Steege, H. (2007) A null model for significance testing of presence only species distribution models. Ecography 30, 727736.CrossRefGoogle Scholar
Rangel, T.F., Diniz-Filho, J.A.F. & Bini, L.M. (2010) SAM: a comprehensive application for spatial analysis in macroecology. Ecography 33, 4650.Google Scholar
Record, S., Fitzpatrick, M.C., Finley, A.O., Veloz, S. & Ellison, A.M. (2013) Should species distribution models account for spatial autocorrelation? A test of model projections across eight millennia of climate change. Global Ecology and Biogeography 22, 760771.Google Scholar
Steiner, F.M., Schlick-Steiner, B.C., Vanderwal, J., Reuther, K.D., Christian, E., Stauffer, C., Suarez, A.V., Williams, S.E. & Crozier, R.H. (2008) Combined modelling of distribution and niche in invasion biology: a case study of two invasive Teramorium ant species. Diversity and Distributions 14, 538545.Google Scholar
Streito, J.C., Guilbert, E., Mérion, S., Minatchy, J. & Pastou, D. (2012) Premier signalement de Vatiga illudens (Drake, 1922), nouveau ravageur du Manioc dans le Mascareignes (Hemiptera Tingidae). L'Entomologiste 68, 357360.Google Scholar
Wiens, J.J. & Graham, C.H. (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Reviews in Ecology and Systematics 36, 519539.Google Scholar
Supplementary material: PDF

Montemayor Supplementary Material

Supplementary Material S1

Download Montemayor Supplementary Material(PDF)
PDF 180.6 KB