Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T15:25:48.620Z Has data issue: false hasContentIssue false

Predicting the spatial distribution of Ochlerotatus albifasciatus (Diptera: Culicidae) abundance with NOAA imagery

Published online by Cambridge University Press:  12 November 2007

R.M. Gleiser*
Affiliation:
CONICET, Centro de Evaluación y Relevamiento de Recursos Agrícolas y Naturales (CREAN), Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba. Av. Valparaíso s.n. C.C. 509, Córdoba (5000), Argentina
D.E. Gorla
Affiliation:
Centro Regional de Investigaciones Científicas y Transferencia Tecnológica (CRILAR), Mendoza y Entre Ríos s/n, Anillaco (5301), La Rioja, Argentina
*
*Fax: +54 351 433 4118 ext. 114 E-mail: rgleiser@crean.agro.uncor.edu

Abstract

Ochlerotatus albifasciatus is a vector of western equine encephalomyelitis in Argentina and a nuisance mosquito affecting beef and dairy production. The objective of this study was to analyze whether environmental proxy data derived from 1 km resolution NOAA-AVHRR images could be useful as a rapid tool for locating areas with higher potential for Oc. albifasciatus activity at a regional scale. Training sites for mosquito abundance categories were 3.3×3.3 km polygons over sampling sites. Abundance was classified into two categories according to a proposed threshold for economic losses. Data of channels 1, 2, 4 and 5 were used to calculate five biophysical variables: normalized differences vegetation index (NDVI), land surface temperature, total precipitable water, dew point and vapour saturation deficit. A discriminant analysis correctly classified 100% of the areas predicted to be above or below the economic threshold of 2500 mosquitoes per night of capture, respectively. Components of the NDVI, the total precipitable water and the dew point temperature contributed most to the function value. The results suggest that environmental data derived from AVHRR-NOAA could be useful for rapidly identifying adequate areas for mosquito development or activity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agassi, E. & Yosef, N.B. (1998) The effect of the thermal infrared data on principal component analysis of multi-spectral remotely-sensed data. International Journal of Remote Sensing 19, 16831694.CrossRefGoogle Scholar
Almirón, W.R. & Brewer, M. (1996) Classification of immature stage habitats of Culicidae (Diptera) collected in Córdoba, Argentina. Memorias do Instituto Oswaldo Cruz 91, 19.CrossRefGoogle ScholarPubMed
Almirón, W.R., Ludueña, Almeida F.F. & Brewer, M. (2000) Relative abundance and gonotrophic status of Aedes albifasciatus (Diptera: Culicidae) during the autumn-winter period in Córdoba Province, Argentina. Journal of Medical Entomology 37, 1620.CrossRefGoogle ScholarPubMed
Avilés, G., Sabattini, M.S. & Mitchell, C.J. (1992) Transmission of Western Equine Encephalomyelitis by argentine Aedes albifasciatus (Diptera: Culicidae). Journal of Medical Entomology 29, 850853.CrossRefGoogle ScholarPubMed
Dale, P.E.R. & Morris, C.D. (1996) Culex annulirostris breeding sites in urban areas: using remote sensing and digital image analysis to develop a rapid predictor of potential breeding areas. Journal of the American Mosquito Control Association 12, 316320.Google ScholarPubMed
Eastman, J.R. (2006a) IDRISI Andes Edition (2006) ©1987–2006, Worcester, MA, USA, Clark University.Google Scholar
Eastman, J.R. (2006b) IDRISI Andes. Guide to GIS and image processing. Worcester, MA, USA, Clark Labs, Clark University.Google Scholar
Eastman, J.R. & Fulk, M. (1993) Long sequence time-series evaluation using standardized principal components. Photogrammetric Engineering and Remote Sensing 59, 13071312.Google Scholar
Eck, T.F. & Holben, B.N. (1994) AVHRR split window temperature differences and total precipitable water over land surfaces. International Journal of Remote Sensing 15, 567582.CrossRefGoogle Scholar
Fischer, S., Marinone, M.C. & Schweigmann, N. (2002) Ochlerotatus albifasciatus in rain pools of Buenos Aires: seasonal dynamics and relation to environmental variables. Memorias do Instituto Oswaldo Cruz 97, 767773.CrossRefGoogle Scholar
Fontanarrosa, M.S., Marinone, M.C., Fischer, S., Orellano, P.W. & Schweigmann, N. (2000) Effects of flooding and temperature on Aedes albifasciatus development time and larval density in two rain pools at Buenos Aires University City. Memorias do Instituto Oswaldo Cruz 95, 787793.CrossRefGoogle Scholar
Gleiser, R.M. (2004) Sistemas de información geográfica y satélites meteorológicos como herramientas para la vigilancia de zoonosis. pp. 397403in Cacchione, R., Durlach, R. & Larghi, O. (Eds) Temas de Zoonosis II. Buenos Aires, Asociación Argentina de Zoonosis.Google Scholar
Gleiser, R.M., Gorla, D.E. & Ludueña, Almeida F.F. (1997) Monitoring Aedes (Ochlerotatus) albifasciatus (Macquart 1838) (Diptera: Culicidae) abundance in the southern region of Mar Chiquita Lake, with the aid of remote sensing. Annals of Tropical Medicine and Parasitology 91, 917926.CrossRefGoogle Scholar
Gleiser, R.M., Gorla, D.E. & Schelotto, G. (2000) Population Dynamics of Aedes albifasciatus (Diptera: Culicidae) South of Mar Chiquita Lake, Central Argentina. Journal of Medical Entomology 37, 2126.CrossRefGoogle ScholarPubMed
Gleiser, R.M., Schelotto, G. & Gorla, D.E. (2002) Spatial pattern of abundance of the mosquito Ochlerotatus albifasciatus in relation to habitat characteristics. Medical and Veterinary Entomology 16, 364371.CrossRefGoogle ScholarPubMed
Gorla, D.E. (2001) Analysis of the geographic distribution of Triatominae at continental scale based on information of environmental variables. UNLaR Ciencia 2, 28.Google Scholar
Hall, M.J.R. & Hillyard, P.D. (1993) Tabanids and ticks of Córdoba as pests of livestock with emphasis on the Laguna Mar Chiquita region. Report on a visit to University of Córdoba, Argentina 11–25 October 1993. Medical, Veterinary and Collections Management. Cromwell Road, London Divisions, The Natural History Museum.Google Scholar
Hay, S.I., Randolph, S.E. & Rogers, D.E. (2000) Remote sensing and geographical information systems in epidemiology. Advances in Parasitology 47. Oxford, Academic Press.Google Scholar
Isaaks, E.H. & Srivastava, R.M. (1989) An Introduction to Applied Geostatistics. Oxford, University Press, Inc.Google Scholar
Jarsún, B., Gorgas, J.A., Zamora, E., Bosnero, E., Lovera, E., Ravelo, A. & Tassile, J.L. (2003) Los suelos. pp. 2328in Gorgas, J.A. & Tassile, J.L. (Eds) Recursos Naturales de la Provincia de Córdoba. Córdoba, Agencia Córdoba Ambiente e INTA.Google Scholar
Lu, L., Li, X. & Cheng, G.-D. (2002) Analysis on the seasonal phenological characteristics of the Heihe river basin with AVHRR NDVI data set. Geoscience and Remote Sensing Symposium, 2002. IGARSS'02. 2002 IEEE International 4, 19971999.Google Scholar
Ludueña, Almeida F.F. (1994) Ecología Poblacional de Aedes (Ochlerotatus) albifasciatus Macquart, 1838 (Diptera: Culicidae) en el Arco Sur de Mar Chiquita (Córdoba). Doctoral Thesis, Universidad Nacional de Córdoba. Argentina, 133 pp.CrossRefGoogle Scholar
Ludueña, Almeida F.F. & Gorla, D.E. (1995) The biology of Aedes (Ochlerotatus) albifasciatus Macquart, 1838 (Diptera: Culicidae) in Central Argentina. Memorias do Instituto Oswaldo Cruz 90, 463468.CrossRefGoogle Scholar
Maciá, A., García, J. & Campos, R. (1995) Bionomía de Aedes albifasciatus y Ae. crinifer (Diptera: Culicidae) y sus enemigos naturales en Punta Lara, Buenos Aires. Neotrópica 41, 4350.Google Scholar
Malone, J.B., Yilma, J.M., McCarroll, J.C., Erko, B., Mukaratirwa, S. & Zhou, X. (2001) Satellite climatology and the environmental risk of Schistosoma mansoni in Ethiopia and East Africa. Acta Tropica 79, 5972.CrossRefGoogle ScholarPubMed
Menghi, M. & Herrera, M. (1995) Major vegetational trends related to relief and hydrology in the Mar Chiquita wetlands. Coenoses 10, 110.Google Scholar
Menghi, M. & Herrera, M. (1998) Modelo de estados y transiciones para pastizales del valle de inundación del Río Dulce (Depresión de Mar Chiquita, Córdoba, Argentina). Ecotropics 11, 131140.Google Scholar
Mitchell, C.J., Monath, T.P., Sabattini, M.S., Daffner, J., Cropp, C.B., Calisher, C.H., Darsie, R.F. & Jakob, W.L. (1987) Arbovirus isolation from mosquitoes collected during and after the 1982–1983 epizootic of western equine encephalitis in Argentina. American Journal of Tropical Medicine and Hygiene 36, 107113.CrossRefGoogle ScholarPubMed
Nagendra, H. (2001) Using remote sensing to assess biodiversity. International Journal of Remote Sensing 22, 23772400.CrossRefGoogle Scholar
Price, J.C. (1984). Land surface temperature measurement from the split window channels of the NOAA 7 advanced very high resolution radiometer. Journal of Geophysical Research 89, 72317237.CrossRefGoogle Scholar
Prince, S.D. & Goward, S.N. (1995). Global primary production: a remote sensing approach. Journal of Biogeography 22, 815835.CrossRefGoogle Scholar
Randolph, S.E., Green, R.M., Peacey, M.F. & Rogers, D.J. (2000) Seasonal synchrony: the key to tick-borne encephalitis foci identified by satellite data. Parasitology 121, 1523.CrossRefGoogle ScholarPubMed
Reinert, J.F. (2000) New classification for the composite genus Aedes (Diptera: Culicidae: Aedini), elevation of subgenus Ochlerotatus to generic rank, reclassification of the other subgenera, and notes on certain subgenera and species. Journal of the American Mosquito Control Association 16, 175188.Google ScholarPubMed
Smith, W.L. (1966) Note on the relationship between total precipitable water and surface dew point. Journal of Applied Meteorology 5, 726727.2.0.CO;2>CrossRefGoogle Scholar
StatSoft, Inc. (2006) STATISTICA (data analysis software system), version 7.1. www.statsoft.com.Google Scholar
Vezzani, D., Eiras, D.F. & Wisnivesky, C. (2006) Dirofilariasis in Argentina: Historical review and first report of Dirofilaria immitis in a natural mosquito population. Veterinary Parasitology 136, 259273.CrossRefGoogle Scholar