Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T04:48:28.733Z Has data issue: false hasContentIssue false

A preliminary study of variation and inheritance of life-history traits and the occurrence of hybrid vigour in Sitobion avenae (F.) (Hemiptera: Aphididae)

Published online by Cambridge University Press:  10 July 2009

Chris Newton
Affiliation:
School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
A. F. G. Dixon
Affiliation:
School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK

Abstract

Clones of Sitobion avenae (F.) collected in southern England in 1983 and 1984 were subjected to sexual-inducing conditions in the laboratory (12 L:8 D photoperiod at 15°C and/or 8 L:16 D photoperiod at 12°C). Most clones were continuously parthenogenetic under these conditions; some clones produced males only (androcyclic), and the same behaviour was observed under field conditions in the autumn of 1983. In contrast, over 90% of the clones collected from Scotland in 1984 were holocyclic (i.e. cyclically parthenogenetic). Fundatrices from intra- and interclonal matings were obtained. Those from interclonal matings were significantly more fecund than fundatrices from intraclonal matings. Examination of the descendants of these fundatrices indicated that both life-history strategy and migratory tendency were genetically-determined.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blackman, R. L. (1971). Variation in the photoperiodic response within natural populations of Myzus persicae (Sulz.).—Bull. ent. Res. 60, 533546.CrossRefGoogle ScholarPubMed
Blackman, R. L. (1972). The inheritance of life-cycle differences in Myzus persicae (Sulz.) (Hem., Aphididae).—Bull. ent. Res. 62, 281294.Google Scholar
Blackman, R. L. (1974). Life-cycle variation of Myzus persicae (Sulz.) (Hom., Aphididae) in different parts of the world, in relation to genotype and environment.—Bull. ent. Res. 63, 595607.CrossRefGoogle Scholar
Cartier, J. J. & Painter, R. H. (1956). Differential reactions of two biotypes of the corn leaf aphid to resistant and susceptible varieties, hybrids and selections of sorghums.—J. econ. Ent. 49, 498508.Google Scholar
Dewar, A. M. (1982). What does a suction trap sample represent?—pp. 17–22 in Bernard, J. (Ed.). Euraphid Gembloux 1982.—91 pp. Gembloux, Stn Zool. Appl., C.R.A.Google Scholar
Dewar, A. M. & Carter, N. (1984). Decision trees to assess the risk of cereal aphid (Hemiptera: Aphididae) outbreaks in summer in England.—Bull. ent. Res. 74, 387398.CrossRefGoogle Scholar
Dixon, A. F. G. (1985). Structure of aphid populations.—A. Rev. Ent. 30, 155174.Google Scholar
Eggers-Schumacher, H. A. (1983). A comparison of the reproductive performance of insecticide- resistant and susceptible clones of Myzus persicae.Entomologia exp. appl. 34, 301307.Google Scholar
Empson, D. W. (1952). Survey of cabbage aphid populations on brussels sprouts, 1946–51.—Pl. Path. 1, 3538.Google Scholar
Entwistle, J. (1987). Forecasting of cereal aphid outbreaks in England.—228 pp. Ph.D. thesis, Univ. East Anglia.Google Scholar
Hand, S. C. (1982). Overwintering and dispersal of cereal aphids.—392 pp. Ph.D. thesis, Univ. Southampton.Google Scholar
Hille Ris Lambers, D. (1966). Polymorphism in Aphididae.—A. Rev. Ent. 11, 4778.Google Scholar
Lamb, R. J. & MacKay, P. A. (1983). Micro-evolution of the migratory tendency, photoperiodic response and development threshold of the pea aphid, Acyrthosiphon pisum.—pp. 209–217 in Brown, V. K. & Hodek, I. (Eds). Diapause and life cycle strategies in insects.—283 pp. The Hague, W. Junk.Google Scholar
Landis, B. J., Powell, D. M. & Fox, L. (1972). Overwintering and winter dispersal of the potato aphid in eastern Washington.—Environ. Entomol. 1, 6871.CrossRefGoogle Scholar
Lowe, H. J. B. (1980). Resistance to aphids in immature wheat and barley.—Ann. appl. Biol. 95, 129135.Google Scholar
Lowe, H. J. B. & Taylor, L. R. (1964). Population parameters, wing production and behaviour in red and green Acyrthosiphon pisum (Harris) (Homoptera: Aphididae).—Entomol. exp. appl. 7, 287295.Google Scholar
Loxdale, H. D., Tarr, I. J., Weber, C. P., Brookes, C. P., Digby, P. G. N. & Castañera, P. (1985). Electrophoretic study of enzymes from cereal aphid populations. III. Spatial and temporal genetic variation of populations of Sitobion avenae (F.) (Hemiptera: Aphididae).—Bull. ent. Res. 75, 121141.CrossRefGoogle Scholar
Markkula, M. (1963). Studies on the pea aphid, Acyrthosiphon pisum (Hom., Aphididae). with special reference to the differences in the biology of the green and red forms.—Ann. Agric. Fenn. 2 (suppl. 1), 30 pp.Google Scholar
Matsumoto, K. & Tsuji, H. (1979). Occurrence of two colour types in the green peach aphid, Myzus persicae, and their susceptibility to insecticides.—Jap. J. appl. Ent. Zool. 23, 9299.Google Scholar
Müller, F. P. (1962). Biotypen und Unterarten der “Erbsenlaus” Acyrthosiphon pisum (Harris).—Z. PflKrankh. PflSchutz 69, 129136.Google Scholar
Newton, C. (1986). Overwintering strategies of the English grain aphid, Sitobion avenae (F.).—Ph.D. thesis, Univ. East Anglia.Google Scholar
Newton, C. & Dixon, A. F. G. (1987). Cost of sex in aphids: size of males at birth and the primary sex ratio in Sitobion avenae (F.).—Funct. Ecol. 1.Google Scholar
Newton, C. & Dixon, A. F. G. (in press). Methods of hatching the eggs and rearing the fundatrices of the English grain aphid, Sitobion avenae.—Entomologia exp. appl.Google Scholar
Sutherland, O. R. W. (1969 a). The role of crowding in the production of winged forms by two strains of the pea aphid, Acyrthosiphon pisum.J. Insect Physiol. 15, 13851410.Google Scholar
Sutherland, O. R. W. (1969 b). The rôle of the host plant in the production of winged forms by two strains of the pea aphid, Acyrthosiphon pisum.J. Insect Physiol. 15, 21792201.Google Scholar
Takada, H. (1979). Characteristics of forms of Myzus persicae (Sulzer) (Homoptera: Aphididae) distinguished by colour and esterase differences, and their occurrence in populations on different host plants in Japan.—Appl. Entomol. & Zool. 14, 370375.Google Scholar
Takada, H. (1981). Inheritance of body colors in Myzus persicae (Sulzer) (Homoptera: Aphididae).—Appl. Entomol. & Zool. 16, 242246.Google Scholar
Tamaki, G., Annis, B., Fox, L., Gupta, R. K. & Meszleny, A. (1982). Comparison of yellow holocyclic and green anholocyclic strains of Myzus persicae (Sulzer): low temperature adaptability.—Environ. Entomol. 11, 231233.Google Scholar
Tamaki, G., Nawrocka, B., Fox, L., Annis, B. & Gupta, R. K. (1982). Comparison of yellow holocyclic and green anholocyclic strains of Myzus persicae (Sulzer): transmission of beet western yellows virus.—Environ. Entomol. 11, 234238.Google Scholar
Taylor, L. R. (1986). Synoptic dynamics, migration and the Rothamsted Insect Survey.—J. Anim. Ecol. 55, 138.Google Scholar
Ueda, N. & Takada, H. (1977). Differential relative abundance of green-yellow and red forms of Myzus persicae (Sulzer) (Homoptera: Aphididae) according to host plant and season.—Appl. Entomol. & Zool. 12, 124133.CrossRefGoogle Scholar
Walters, K. F. A. & Dewar, A. M. (1986). Overwintering strategy and the timing of the spring migration of the cereal aphids Sitobion avenae and Sitobion fragariae.—J. appl. Ecol. 23, 905915.CrossRefGoogle Scholar
Watson, S. J. & Carter, N. (1983). Weather and modelling cereal aphid populations in Norfolk (UK).—EPPO Bull. 13 (2), 223227.Google Scholar
Watt, A. D. & Dixon, A. F. G. (1981). The role of cereal growth stages and crowding in the induction of alatae in Sitobion avenae and its consequences for population growth.—Ecol. Entomol. 6, 441447.Google Scholar
Weber, G. (1985). On the ecological genetics of Sitobion avenae (F.) (Hemiptera, Aphididae).—Z. angew. Ent. 100, 100110.Google Scholar
Weisgraber, K. H., Lousberg, R. J. J. C. & Weiss, U. (1971). The chemical basis of the color dimorphism of an aphid, Macrosiphum liriodendri (Monell), and a locust, Amblycorypha sp. Novel carotenoids.—Experientia 27, 10171018.CrossRefGoogle Scholar