Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T11:20:48.729Z Has data issue: false hasContentIssue false

Psyttalia ponerophaga (Hymenoptera: Braconidae) as a potential biological control agent of olive fruit fly Bactrocera oleae (Diptera: Tephritidae) in California

Published online by Cambridge University Press:  24 May 2007

K.R. Sime*
Affiliation:
Center for Biological Control, Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720-3114, USA
K.M. Daane
Affiliation:
Center for Biological Control, Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720-3114, USA
A. Kirk
Affiliation:
USDA – Agriculture Research Service, European Biological Control Laboratory, Montferrier sur Lez, 34988 St Gély Cedex, France
J.W. Andrews
Affiliation:
College of Natural Resources, University of California, Berkeley, CA 94720-3114, USA
M.W. Johnson
Affiliation:
Department of Entomology, University of California, Riverside, CA 92521-0314, USA
R.H. Messing
Affiliation:
University of Hawaii, Kauai Agricultural Research Center, 7370-A Kuamoo Road, Kapaa, Kauai, HI 96746, USA
*
*Fax: 510 643 5438 E-mail: ksime@nature.berkeley.edu

Abstract

The olive fruit fly, Bactrocera oleae (Rossi), is a newly invasive, significant threat to California's olive industry. As part of a classical biological control programme, Psyttalia ponerophaga (Silvestri) was imported to California from Pakistan and evaluated in quarantine. Biological parameters that would improve rearing and field-release protocols and permit comparisons to other olive fruit fly biological control agents were measured. Potential barriers to the successful establishment of P. ponerophaga, including the geographic origins of parasitoid and pest populations and constraints imposed by fruit size, were also evaluated as part of this investigation. Under insectary conditions, all larval stages except neonates were acceptable hosts. Provided a choice of host ages, the parasitoids' host-searching and oviposition preferences were a positive function of host age, with most offspring reared from hosts attacked as third instars. Immature developmental time was a negative function of tested temperatures, ranging from 25.5 to 12.4 days at 22 and 30°C, respectively. Evaluation of adult longevity, at constant temperatures ranging from 15 to 34°C, showed that P. ponerophaga had a broad tolerance of temperature, living from 3 to 34 days at 34 and 15°C, respectively. Lifetime fecundity was 18.7±2.8 adult offspring per female, with most eggs deposited within 12 days after adult eclosion. Olive size affected parasitoid performance, with lower parasitism levels on hosts feeding in larger olives. The implications of these findings are discussed with respect to field manipulation and selection of parasitoid species for olive fruit fly biological control in California and worldwide.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annecke, D.P. & Moran, V.C. (1982) Insects and mites of cultivated plants in South Africa. Durban, Butterworths.Google Scholar
Bartolini, G. & Petruccelli, R. (2002) Classification, origin, diffusion and history of the olive. Rome, Food and Agriculture Organization of the United Nations.Google Scholar
Biliotti, E. & Delanoue, P. (1959) Contribution a l'étude biologique d'Opius concolor Szepl. (Hym.: Braconidae) en élevage de laboratoire. Entomophaga 4, 714.CrossRefGoogle Scholar
Billah, M.K., Kimani-Njogu, S.W., Overholt, W.A., Wharton, R.A., Wilson, D.D. & Cobblah, M.A. (2005) The effect of host larvae on three Psyttalia species (Hymenoptera: Braconidae), parasitoids of fruit-infesting flies (Diptera: Tephritidae). International Journal of Tropical Insect Science 25, 168175.CrossRefGoogle Scholar
Cameron, E. (1941) The biology and post-embryonic development of Opius ilicis n. sp., a parasite of the holly leaf-miner (Phytomyza ilicis Curt.). Parasitology 33, 839.CrossRefGoogle Scholar
Clausen, C.P. (1978) Introduced parasites and predators of arthropod pests and weeds: a world review. Washington, DC, United States Department of Agriculture, Agriculture Handbook No. 480.Google Scholar
Collier, T.R. & Van Steenwyk, R.A. (2003) Prospects for integrated control of olive fruit fly are promising in California. California Agriculture 57, 2831.CrossRefGoogle Scholar
Copeland, R.S., White, I.M., Okumu, M., Machera, P. & Wharton, R.A. (2004) Insects associated with fruits of the Oleaceae (Asteridae, Lamiales) in Kenya, with special reference to the Tephritidae (Diptera). Bishop Museum Bulletins in Entomology 12, 135164.Google Scholar
Daane, K.M., Rice, R.E., Barnett, W.W., Zalom, F.G. & Johnson, M.W. (2005) Arthropod pests. pp. 105114in Sibbett, G. & Ferguson, L. (Eds) Olive production manual. Berkeley, UC Division of Agriculture and Natural Resources.Google Scholar
Dahlsten, D.L., Daane, K.M., Paine, T.D., Sime, K.R., Lawson, A.B., Rowney, D.L., Roltsch, W., Andrews, J.W., Kabashima, J.N., Shaw, D.A., Robb, K.L., Geisel, P.M., Chaney, W.E., Ingels, C.A., Varela, L.G. & Bianchi, M.L. (2005) Imported parasitoid helps control red gum lerp psyllid. California Agriculture 59, 229234.CrossRefGoogle Scholar
El-Heneidy, A.H., Omar, A.H., El-Sherif, H. & El-Khawas, M.A. (2001) Survey and seasonal abundance of the parasitoids of the olive fruit fly, Bactrocera (Dacus) oleae Gmel. (Diptera: Trypetidae) in Egypt. Arab Journal of Plant Protection 19, 8085.Google Scholar
Fimiani, F. (1989) Pest status: Mediterranean region. pp. 3950in Robinson, A. & Hooper, G. (Eds) Fruit flies: their biology, natural enemies and control. Vol. 3A. Amsterdam, Elsevier.Google Scholar
Greathead, D.J. (1976) A review of biological control in western and southern Europe. Farnham Royal, Commonwealth Agricultural Bureaux.Google Scholar
Headrick, D.H. & Goeden, R.D. (1996) Issues concerning the eradication or establishment and biological control of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), in California. Biological Control 6, 412421.CrossRefGoogle Scholar
Hoelmer, K.A. & Kirk, A.A. (2005) Selecting arthropod biological control agents against arthropod pests: can the science be improved to decrease the risk of releasing ineffective agents? Biological Control 34, 255264.CrossRefGoogle Scholar
Hoelmer, K.A., Kirk, A., Wharton, R.A. & Pickett, C.H. (2004) Foreign exploration for parasitoids of the olive fruit fly, Bactrocera oleae. pp. 1214in Woods, D. (Ed.) Biological control program annual summary, 2003. Sacramento, California, CDFA Plant Health and Pest Prevention Services.Google Scholar
Kimani-Njogu, S.W., Trostle, M.K., Wharton, R.A., Woolley, J.B. & Raspi, A. (2001) Biosystematics of the Psyttalia concolor species complex (Hymenoptera: Braconidae: Opiinae): the identity of populations attacking Ceratitis capitata (Diptera: Tephritidae) in coffee in Kenya. Biological Control 20, 167174.CrossRefGoogle Scholar
Lang, R.F., Richard, R.D., Parker, P.E. & Wendel, L. (2000) Release and establishment of diffuse and spotted knapweed biocontrol agents by USDA, APHIS, PPQ, in the United States. Pan-Pacific Entomologist 76, 197218.Google Scholar
Mohamed, S.A., Overholt, W.A., Wharton, R.A., Lux, S.A. & Eltoum, E.M. (2003) Host specificity of Psyttalia cosyrae (Hymenoptera: Braconidae) and the effect of different host species on parasitoid fitness. Biological Control 28, 155163.CrossRefGoogle Scholar
Narayanan, E.S. & Chawla, S.S. (1962) Parasites of fruit fly pests of the world. Beiträge zur Entomologie 12, 437476.Google Scholar
Nardi, F., Carapelli, A., Dallai, R., Roderick, G.K. & Frati, F. (2005) Population structure and colonization history of the olive fly, Bactrocera oleae (Diptera, Tephritidae). Molecular Ecology 14, 27292738.CrossRefGoogle Scholar
Neuenschwander, P. (1982) Searching parasitoids of Dacus oleae in South Africa. Zeitschrift für Angewandte Entomologie 94, 509522.CrossRefGoogle Scholar
Raspi, A. & Canale, A. (2000) Effect of superparasitism on Ceratitis capitata (Wiedemann) (Diptera Tephritidae) second instar larvae by Psyttalia concolor (Szépligeti) (Hymenoptera Braconidae). Redia 83, 123131.Google Scholar
Rice, R.E., Phillips, P.A., Stewart-Leslie, J. & Sibbett, G.S. (2003) Olive fruit fly populations measured in central and southern California. California Agriculture 57, 122127.CrossRefGoogle Scholar
Sime, K.R., Daane, K.M., Andrews, J.W., Hoelmer, K.A., Pickett, C.H., Nadel, H., Johnson, M.W. & Messing, R.H. (2006a) The biology of Bracon celer as a parasitoid of the olive fruit fly. Biocontrol 51, 553567.CrossRefGoogle Scholar
Sime, K.R., Daane, K.M., Nadel, H., Funk, C.S., Messing, R.H., Andrews, J.W., Johnson, M.W. & Pickett, C.H. (2006b) Diachasmimorpha longicaudata and D. kraussii (Hymenoptera: Braconidae), potential parasitoids of the olive fruit fly. Biocontrol Science and Technology 16, 169179.CrossRefGoogle Scholar
Sime, K.R., Daane, K.M., Messing, R.H. & Johnson, M.W. (2006c) Comparison of two laboratory cultures of Psyttalia concolor (Hymenoptera: Braconidae), as a parasitoid of the olive fruit fly. Biological Control 39, 248255.CrossRefGoogle Scholar
Sivinski, J. & Aluja, M. (2003) The evolution of ovipositor length in the parasitic Hymenoptera and the search for predictability in biological control. Florida Entomologist 86, 143150.CrossRefGoogle Scholar
Sivinski, J., Vulinec, K. & Aluja, M. (2001) Ovipositor length in a guild of parasitoids (Hymenoptera: Braconidae) attacking Anastrepha spp. fruit flies (Diptera: Tephritidae) in southern Mexico. Annals of the Entomological Society of America 94, 886895.CrossRefGoogle Scholar
Sobhian, R. (1993) Life-history and host-specificity of Urophora sirunaseva (Hering) (Dipt, Tephritidae), a candidate for biological control of yellow starthistle, with remarks on the host plant. Journal of Applied Entomology 116, 381390.CrossRefGoogle Scholar
Stavraki-Paulopoulou, H.G. (1966) Contribution a l'étude de la capacite reproductrice et de la fécondité réelle d'Opius concolor Szepl. (Hymenoptera-Braconidae). Annales Des Epiphyties 17, 391435.Google Scholar
SYSTAT (2000) SYSTAT Version 10.0. Evanston, Illinois, SPSS, Inc.Google Scholar
Turner, C.E., Piper, G.L. & Coombs, E.M. (1996) Chaetorellia australis (Diptera: Tephritidae) for biological control of yellow starthistle, Centaurea solstitialis (Compositae), in the western USA: establishment and seed destruction. Bulletin of Entomological Research 86, 177182.CrossRefGoogle Scholar
Tzanakakis, M. (1989) Small scale rearing: Dacus oleae. pp. 105118in Robinson, A. & Hooper, G. (Eds) Fruit flies: their biology, natural enemies and control, Vol. 3B. Amsterdam, Elsevier.Google Scholar
Tzanakakis, M.E. (2003) Seasonal development and dormancy of insects and mites feeding on olive: a review. Netherlands Journal of Zoology 52, 87224.CrossRefGoogle Scholar
Wharton, R.A. (1989) Classical biological control of fruit-infesting Tephritidae. pp. 303313in Robinson, A. & Hooper, G. (Eds) Fruit flies: their biology, natural enemies and control, Vol. 3B. Amsterdam, Elsevier.Google Scholar
Wharton, R.A. & Gilstrap, F. (1983) Key to and status of opiine braconid (Hymenoptera) parasitoids used in biological control of Ceratitis and Dacus s.l. (Diptera: Tephritidae). Annals of the Entomological Society of America 76, 721742.CrossRefGoogle Scholar
Wharton, R.A., Trostle, M.K., Messing, R.H., Copeland, R.S., Kimani-Njogu, S.W., Lux, S., Overholt, W.A., Mohamed, S. & Sivinski, J. (2000) Parasitoids of medfly, Ceratitis capitata, and related tephritids in Kenyan coffee: a predominantly koinobiont assemblage. Bulletin of Entomological Research 90, 517526.CrossRefGoogle Scholar
Yu, D.S., Luck, R.F. & Murdoch, W.W. (1990) Competition, resource partitioning and coexistence of an endoparasitoid Encarsia perniciosi and an ectoparasitoid Aphytis melinus of the California red scale. Ecological Entomology 15, 469480.CrossRefGoogle Scholar