Hostname: page-component-5f745c7db-nc56l Total loading time: 0 Render date: 2025-01-06T22:02:09.511Z Has data issue: true hasContentIssue false

RAPD and mitochondrial DNA analysis of the soybean stalk weevil, Sternechus subsignatus (Coleoptera: Curculionidae)

Published online by Cambridge University Press:  16 June 2008

D.R. Sosa-Gomez*
Affiliation:
Embrapa Soja, Caixa Postal 231, Londrina, 86001-970, Paraná State, Brazil
N. Coronel
Affiliation:
Estación Experimental Agroindustrial Obispo Colombres, Av. William Cross 3150, CPT4101XAC, Las Talitas, Tucuman, Argentina
E. Binneck
Affiliation:
Embrapa Soja, Caixa Postal 231, Londrina, 86001-970, Paraná State, Brazil
M.I. Zucchi
Affiliation:
Instituto Agronômico de Campinas, Centro de Recursos Genéticos, Laboratório de Biologia Molecular. Caixa-Postal, 28 Av. Barão de Itapura, 1481 Centro 13020902, Campinas, SP, São Paulo State, Brazil
G. Rosado-Neto
Affiliation:
Universidade Federal do Paraná, Departamento de Zoologia Caixa Postal 19020, Curitiba, 81531-980, Paraná State, Brazil
*
*Author for correspondence Fax: +55 43 3371 6100 E-mail: drsg@cnpso.embrapa.br

Abstract

Sternechus subsignatus Boheman (Curculionidae: Sternechini) is one of the primary Curculionidae species that reduces soybean yield in Brazil. Initially, outbreaks were reported in southern Brazil in 1973; but, more recent, outbreaks were reported in Bahia (summer 1997–1998) and Maranhão (summer 2003–2004), two states in northeastern Brazil. A putative related species, S. pinguis (Fabricius), was first detected in Salta Province, Argentina. The objective of this study was to evaluate intraspecific molecular polymorphisms of geographically distinct Sternechus populations. Randomly amplified polymorphic DNA (RAPD) profiles and partial mitochondrial cytochrome B (CytB) gene sequences were used to determine whether individual soybean stalk weevils were one of two different species and to infer pest invasion pattern. Putative S. pinguis and S. subsignatus populations were collected in San Agustin (Cruz Alta, Tucumán Province, Argentina) and different sampling sites in the Brazilian states of Paraná, Bahia and Maranhão. Polymorphic bands were obtained by RAPD and analyzed by Dice coefficients. Populations from southern Brazil were more closely related genetically to an Argentinean group than the populations sampled in northeastern Brazil. The Londrina Co., Brazil population displayed the highest intra-population genetic similarity. Most of the soybean stalk weevils collected from San Agustin, Tucumán, Argentina were divergent from those collected in Brazil. Sequencing and parsimony analysis of CytB did not differentiate specimens collected in Argentina and Brazil. Thus, our data show that soybean stalk weevil outbreaks and population increases in northeastern Brazil involved local genotypes.

Type
Research Paper
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Costilla, M.A. & Venditti, M.A. (1990) El curculionido Sternechus pinguis (Fabricius) (Coleoptera: Curculionidae), nueva plaga de la soja en Argentina. Revista Industrial y Agrícola de Tucumán 67, 4753.Google Scholar
Dice, L.R. (1945) Measures of the amount of ecologic association between species. Ecology 26, 297302.CrossRefGoogle Scholar
Felsenstein, J. (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783791.CrossRefGoogle ScholarPubMed
Garesse, R. (1988) Drosophila melanogaster mitochondrial DNA: gene organization and evolutionary considerations. Genetics 118, 649663.CrossRefGoogle ScholarPubMed
Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H. & Hallwachs, W. (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Science, United States 101, 1481214817.CrossRefGoogle ScholarPubMed
Hoffmann-Campo, C.B.H., Oliveira, E.B., Mazzarin, R.M. & de Oliveira, M.C.N. (1990) Níveis de infestação de Sternechus subsignatus Boheman, 1836: Influência nos rendimentos e características agronômicas da soja. Pesquisa Agropecuária Brasileira 25, 221227.Google Scholar
Hoffmann-Campo, C.B., da Silva, M.T.B. & Oliveira, L.J. (1999) Aspectos biológicos e manejo integrado de Sternechus subsignatus na cultura da soja. Embrapa Soja and Fundação Centro de Experimentação e Pesquisa, Circular Técnica 22, 132.Google Scholar
Lima, L.H.C., Campos, L., Moretzsohn, M.C., Navia, D. & de Oliveira, M.R.V. (2002) Genetic diversity of Bemisia tabaci (Genn.) populations in Brazil revealed by RAPD markers. Genetic and Molecular Biology 25, 217223.CrossRefGoogle Scholar
Lopes da Silva, M., Tonet, G.E.L. & Vieira, L.G.E. (2004) Characterization and genetic relationships among Brazilian biotypes of Schizaphis graminum (Rondani) (Hemiptera: Aphididae) using RAPD markers. Neotropical Entomology 33, 4349.CrossRefGoogle Scholar
Monteiro, F.A., Perz, R., Panzera, F., Dujardin, J.P., Galvão, C., Rocha, D., Noireau, F., Schofield, C. & Beard, C.B. (1999) Mitochondrial DNA variation of Triatoma infestans population and its implication in the specific status of T. melanosoma. Memórias do Instituto Oswaldo Cruz 94, 229238.CrossRefGoogle ScholarPubMed
Nei, M. & Kumar, S. (2000). Molecular Evolution and Phylogenetics. 333 pp. New York, Oxford University Press.CrossRefGoogle Scholar
Oliveira, E.B. & Hoffmann-Campo, C.B. (1984) Ocorrência e controle químico de Sternechus subsignatus Boheman, 1836 em soja no Paraná. Anais do II Seminário Nacional de Pesquisa de Soja 7, 166172.Google Scholar
Page, R.D. (2001) Treeview. v. 1.6.6. (win32). http://taxonomy.zoology.gla.ac.uk/rod/rod.html.Google Scholar
Rogers, S.O. & Bendich, A.J. (1988) Extraction of DNA from plant tissues pp. 110in Gelvin, S.B. & Schilperoort, R.A. (Eds) Plant Molecular Biology Manual, vol A6. Belgium, Kluwer Academic Publisher.Google Scholar
Rohlf, F.J. (1993) NTSYS-pc: numerical taxonomy and multivariate analysis system, ver. 2.0j. 31 pp. New York, Exeter Software Setauket.Google Scholar
Rosado-Neto, G.H. (1987) Dimorfismo sexual e distribuição geográfica de Sternechus subsignatus Boheman, 1836 (Coleoptera, Curculionidae) no Brasil. Anais da Sociedade Entomológica do Brasil 16, 199204.CrossRefGoogle Scholar
Rosado-Neto, G.H. (1996) Sistemática, análise cladística e distribuição geográfica da tribo Sternechini (Coleoptera, Curculionidae, Molytinae). PhD thesis, Universidade Federal do Paraná, Paraná, Brazil.Google Scholar
Russo, C.A.M., Miyaki, C.Y. & Pereira, S.L. (2001) Reconstrução filogenética: métodos geométricos pp. 108116in Matioli, S.R. (Ed.) Biologia Molecular e Evolução. Ribeirão Preto, Holos Editora Ltda.Google Scholar
Salas, H., Medina, S., Casmuz, A. & Antoni, M. (2002) El picudo de la soja Sternechus pinguis: descripción y manejo. Avance Agroindustrial 23, 1618.Google Scholar
Schneider, S., Kueffer, J.M., Roessli, D. & Excoffier, L. (2000) ARLEQUIN version 2.0 A software for population genetic data analysis. Genetic and Biometry Laboratory, University of Geneva, Geneva, Switzerland.Google Scholar
Silva, M.T.B. (1998) Aspectos ecológicos de Sternechus subsignatus Boheman (Coleoptera: Curculionidae) em soja no plantio direto. Anais da Sociedade Entomológica do Brasil 27, 4753.CrossRefGoogle Scholar
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. & Flook, P. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651701.CrossRefGoogle Scholar
Sosa, M.A. (2002) El picudo de la soja en el norte santafesino. Idia 21 8993.Google Scholar
Spanos, L., Koutroumbas, G., Kotsyfakis, M. & Louis, C. (2000) The mitochondrial genome of the Mediterranean fruit fly, Ceratitis capitata. Insect Molecular Biology 9, 139144.CrossRefGoogle ScholarPubMed
Swofford, D.L. (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Ver. 4. Sunderland, Massachusetts, Sinauer Associates.Google Scholar
Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.CrossRefGoogle ScholarPubMed
Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle ScholarPubMed
Yap, I.V. & Nelson, R.J. (1996) Winboot: A program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. 22 pp. Manila, Philippines, International Rice Research Institute.Google Scholar