Published online by Cambridge University Press: 10 July 2009
Two strains of Blattella germanica (L.) were developed from a laboratory colony that was resistant to diazinon, propoxur, pyrethrins, lindane and DDT due to selection with diazinon. One strain was reared for nine generations without selection; the other strain was selected with propoxur for 14 generations; selection of the parent strain with diazinon was continued. Resistance to all five insecticides was stable for nine generations in the unselected strain, indicating fixation of the recessive genetic factor for diazinon and propoxur resistance and the incompletely dominant factor(s) for pyrethrins, lindane and DDT resistance. Diazinon and propoxur were equally effective as selecting agents for increasing resistance to diazinon, propoxur and pyrethrins and maintaining resistance to lindane and DDT. Resistance to diazinon and propoxur is probably due to a single recessive factor which attained genetic fixation by selection with diazinon. Cross-resistance to pyrethrins, lindane and DDT, also fixed by diazinon selection, is not due to heterotic effects but may be the pleiotropic action of the diazinon-resistance gene or due to a separate genetic system. The practical implications of this research are discussed.