Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T11:52:09.779Z Has data issue: false hasContentIssue false

Saproxylic community, guild and species responses to varying pheromone components of a pine bark beetle

Published online by Cambridge University Press:  01 March 2013

Iñaki Etxebeste*
Affiliation:
Sustainable Forest Management Research Institute, University of Valladolid -CIFOR-INIA, Avd. Valladolid 44, 34004 Palencia, Spain
José L. Lencina
Affiliation:
Department of Zoology and Physical Anthropology, University of Murcia, Apdo. 4021. 30071 Murcia, Spain
Juan Pajares
Affiliation:
Sustainable Forest Management Research Institute, University of Valladolid -CIFOR-INIA, Avd. Valladolid 44, 34004 Palencia, Spain
*
*Author for correspondence: Phone: +34 679 00 22 88 Fax: +34 979 10 84 19 E-mail: inaki@goisolutions.net

Abstract

Some bark beetle species (Coleoptera: Scolytinae) produce aggregation pheromones that allow coordinated attack on their conifer hosts. As a new saproxylic habitat is founded, an assemblage of associated beetles kairomonally respond to bark beetle infochemicals. Ips sexdentatus is one of the major damaging insects of Pinus spp. in Southern Europe. Its response to varying ipsenol (Ie) percentages in relation to ipsdienol (Id) was studied in northwestern Spain, along with the entire saproxylic beetle assemblage captured at multiple-funnel traps. Response profile modeling was undertaken for I.sexdentatus sexes and sex-ratios, associated species and for selected trophic groups using a reference Gaussian model. In addition, the effects on the saproxylic assemblages were analyzed. I. sexdentatus response curve peaked at 22.7% Ie content, while remaining taxa that could be modeled, peaked above ca. 40% Ie. Predator guilds showed a linear relationship with Ie proportion, while competitors showed a delayed response peak. Consequently, species assemblages differed markedly between varying pheromone component mixtures. Given that the evaluated pheromonal proportions mimicked that of logs being colonized by I. sexdentatus, results suggested that the registered differential responses at different levels might provide I.sexdentatus with a temporal window that maximizes conspecific attraction while reducing interference with competitor and predatory guilds. Described responses might help improve the monitoring of the population status of target bark beetles and their associates, but also point toward the by-catch of many natural enemies, as well as rare saproxylic beetle species, interfering with the aims of sustainable forest management.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, J.D., Borden, J.H., McIntosh, R.L., de Groot, P. & Gries, R. (2001) Kairomonal response by four Monochamus species (Coleoptera: Cerambycidae) to bark beetle pheromones. Journal of Chemical Ecology 27, 633–46.Google Scholar
Aukema, B.H. & Raffa, K.F. (2004 a) Does aggregation benefit bark beetles by diluting predation? Links between a group-colonisation strategy and the absence of emergent multiple predator effects. Ecological Entomology 29, 129138.Google Scholar
Aukema, B.H. & Raffa, K.F. (2004 b) Gender- and sequence-dependent predation within group colonizers of defended plants: a constraint on cheating among bark beetles? Oecologia 138, 253258.Google Scholar
Aukema, B.H. & Raffa, K.F. (2005) Selective manipulation of predators using pheromones: responses to frontalin and ipsdienol pheromone components of bark beetles in the Great Lakes region. Agricultural and Forest Entomology 7, 193200.CrossRefGoogle Scholar
Aukema, B.H., Dahlsten, D.L. & Raffa, K.F. (2000 a) Exploiting behavioral disparities among predators and prey to selectively remove pests: maximizing the ratio of bark beetles to predators removed during semiochemically based trap-out. Environmental Entomology 29, 651660.Google Scholar
Aukema, B.H., Dahlsten, D.L. & Raffa, K.F. (2000 b) Improved population monitoring of bark beetles and predators by incorporating disparate behavioral responses to semiochemicals. Environmental Entomology 29, 618629.Google Scholar
Baena, M., Lencina, J.L. & Andújar, C. (2011) Presencia de Lathropus sepicola (Müller, 1821) (Coleoptera: Laemophloeidae) en Sierra Madrona, Ciudad Real (España). Boletín de la Sociedad Entomológica Aragonesa 49, 332.Google Scholar
Billings, R.F. (1988). Forecasting southern pine beetle infestation trends with pheromone traps. in Proceedings of the Symposium: Integrated Control of Scolytid Bark Beetles; 4 July, 1988. IUFRO and 17th International Congress of Entomology, Vancouver, BC. Virginia Polytecnic Institute and State University, Blacksburg, VA. 295306.Google Scholar
Birgersson, G. & Bergstrom, G. (1989) Volatiles released from individual spruce bark beetle entrance holes – quantitative variations during the first week of attack. Journal of Chemical Ecology 15, 24652483.CrossRefGoogle ScholarPubMed
Birgersson, G., Schlyter, F., Lofqvist, J. & Bergstrom, G. (1984) Quantitative variation of pheromone components in the spruce bark beetle Ips typographus (Coleoptera, Scolytidae) from different attack phases. Journal of Chemical Ecology 10, 10291055.CrossRefGoogle Scholar
Blomquist, G.J., Figueroa-Teran, R., Aw, M., Song, M.M., Gorzalski, A., Abbott, N.L., Chang, E. & Tittiger, C. (2010) Pheromone production in bark beetles. Insect Biochemistry and Molecular Biology 40, 699712.CrossRefGoogle ScholarPubMed
Boone, C.K., Six, D.L. & Raffa, K.F. (2008) The enemy of my enemy is still my enemy: competitors add to predator load of a tree-killing bark beetle. Agricultural and Forest Entomology 10, 411421.CrossRefGoogle Scholar
Bouget, C., Brustel, H. & Nageleisen, L.M. (2005) Nomenclature of wood-inhabiting groups in forest entomology: synthesis and semantic adjustments. Comptes Rendus Biologies 328, 936948.Google Scholar
Bussler, H., Bouget, C., Brustel, H., Brandle, M., Riedinger, V., Brandl, R. & Muller, J. (2011) Abundance and pest classification of scolytid species (Coleoptera: Curculionidae, Scolytinae) follow different patterns. Forest Ecology and Management 262, 18871894.Google Scholar
Carroll, A.L., Taylor, S., Régniére, J. & Safranyik, L. (2004). Effects of climate change on range expansion by the mountain pine beetle in British Columbia. In Mountain Pine Beetle Symposium: Challenges and Solutions. 30–31 October 2003, Kelowna, British Columbia.Google Scholar
Crawley, M.J. (2007). The R Book. Chichester, Wiley.Google Scholar
Dajoz, R. (2000). Insects and Forests: The Role and Diversity of Insects in the Forest Environment. Londres, Intercept.Google Scholar
Dodds, K.J., Graber, C. & Stephen, F.M. (2001) Facultative intraguild predation by larval Cerambycidae (Coleoptera) on bark beetle larvae (Coleoptera: Scolytidae). Environmental Entomology 30, 1722.Google Scholar
EFI (2010) Destructive Storms in European Forests: Past and Forthcoming Impacts. European Forest Institute, Atlantic European Regional Office – EFIATLANTIC, Cestas, France. p. 138.Google Scholar
Etxebeste, I. & Pajares, J.A. (2011) Verbenone protects pine trees from colonization by the six-toothed pine bark beetle, Ips sexdentatus Boern. (Col.: Scolytinae). Journal of Applied Entomology 135, 258268.Google Scholar
Etxebeste, I., Álvarez, G., Pérez, G. & Pajares, J.A. (2012) Field response of the six-toothed pine bark beetle, Ips sexdentatus (Col.: Curculionidae, Scolytinae), to pheromonal blend candidates. Journal of Applied Entomology 136, 431444.Google Scholar
Fauna Europaea. (2010) Fauna Europaea version 2.4. Available online at http://www.faunaeur.org (accessed 2011).Google Scholar
Foit, J.Ì. (2010) Distribution of early-arriving saproxylic beetles on standing dead Scots pine trees. Agricultural and Forest Entomology 12, 133141.Google Scholar
Francke, W., Pan, M.L., Bartels, J., Konig, W.A., Vité, J.P., Krawielitzki, S. & Kohnle, U. (1986) The odor bouquet of three pine engraver beetles (Ips spp.). Journal of Applied Entomology-Zeitschrift Fur Angewandte Entomologie 101, 453461.Google Scholar
Gil, L.A. & Pajares, J.A. (1986) Los Escolítidos de las Coníferas en la Península Ibérica. Madrid, Instituto Nacional de Investigaciones Agrarias.Google Scholar
Grégoire, J.C., Couillien, D., Drumont, A., Meyer, H. & Francke, W. (1992) Semiochemicals and the management of Rhizophagus grandis Gyll (Col., Rhizophagidae) for the biocontrol of Dendroctonus micans Kug (Col., Scolytidae). Journal of Applied Entomology-Zeitschrift Fur Angewandte Entomologie 114, 110112.Google Scholar
Grove, S.J. (2002) Saproxylic insect ecology and the sustainable management of forests. Annual Review of Ecology and Systematics 33, 123.Google Scholar
Herard, F. & Mercadier, G. (1996) Natural enemies of Tomicus piniperda and Ips acuminatus (Col., Scolytidae) on Pinus sylvestris near Orleans, France: temporal occurrence and relative abundance, and notes on eight predatory species. Entomophaga 41, 183210.Google Scholar
Ibeas, F., Gallego, D., Diez, J.J. & Pajares, J.A. (2007) An operative kairomonal lure for managing pine sawyer beetle Monochamus galloprovincialis (Coleoptera: Cerymbycidae). Journal of Applied Entomology 131, 1320.Google Scholar
Jactel, H. & Lieutier, F. (1987) Effects of attack density on fecundity of the Scots pine-beetle Ips sexdentatus Boern (Col, Scolytidae). Journal of Applied Entomology-Zeitschrift Fur Angewandte Entomologie 104, 190204.Google Scholar
Kenis, M. & Hilszczanski, J. (2004) Natural enemies of cerambycidae and buprestidae infesting living trees. pp. 475498in Lieutier, F., Day, K.R., Battisti, A., Grégoire, J.-C. & Evans, H.F. (Eds) Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis. Dordrecht, Kluwer Academic Publishers.Google Scholar
Kenis, M., Wermelinger, B. & Grégoire, J.-C. (2004) Research on Parasitoids and predators of Scolytidae – a review. pp. 237290in Lieutier, F., Day, K.R., Battisti, A., Grégoire, J.-C. & Evans, H.F. (Eds) Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis. Dordrecht, Kluwer Academic Publishers.Google Scholar
Klimetzek, D. & Vité, J.P. (1986) The role of insect produced attractants on the aggregation behavior of the Mediterranean pine engraver beetle Orthotomicus erosus. Journal of Applied Entomology-Zeitschrift Fur Angewandte Entomologie 101, 239243.Google Scholar
Kohnle, U. (1991) Verhaltensmodifizierende Duftstoffe in der Aggregation von Borkenkäfern der Gattung Ips DeGeer (Col., Scolytidae). Freiburger Waldschutz-Abhandlungen, Herausgegeben vom Forstzoologischen Institut. Freiburg im Breisgau, Albert-Ludwigs-Universität Freiburg i. Br. p. 156.Google Scholar
Kohnle, U., Meyer, M. & Kluber, J. (1992) Formulation of population attractant for the pine bark beetle, Ips sexdentatus (Col, Scolytidae). Allgemeine Forst Und Jagdzeitung 163, 8187.Google Scholar
Latty, T.M. & Reid, M.L. (2009) First in line or first in time? Effects of settlement order and arrival date on reproduction in a group-living beetle Dendroctonus ponderosae. Journal of Animal Ecology 78, 549555.Google Scholar
Latty, T.M., Magrath, M.J.L. & Symonds, M.R.E. (2009) Harem size and oviposition behaviour in a polygynous bark beetle. Ecological Entomology 34, 562568.Google Scholar
Lencina, J.L., Gallego, D. & Andújar, C. (2008) Nuevos datos de Oedemeridae Latreille, 1810 de la Península Ibérica (Coleptera). Heteropterus Revista de Entomología 8, 95107.Google Scholar
Lieutier, F., Day, K.R., Battisti, A., Grégoire, J.-C. & Evans, H.F. (Eds.) (2004) Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis. Dordrecht, Kluwer Academic Publishers.Google Scholar
Lindgren, B.S. (1983) A multiple funnel trap for scolytid beetles (Coleoptera). Canadian Entomologist 115, 299302.Google Scholar
Nieto, A. & Alexander, K.N.A. (2010) European Red List of Saproxylic Beetles. Luxembourg, Publications Office of the European Union.Google Scholar
Oksanen, J., Roeland, K., Legendre, P., O'Hara, B., Simpson, G.L., Solymos, P., Stevens, H.H. & Wagner, H. (2008) Vegan: Community Ecology Package. R package version 1.15–1.Google Scholar
Pajares, J.A., Ibeas, F., Diez, J.J. & Gallego, D. (2004) Attractive responses by Monochamus galloprovincialis (Col., Cerambycidae) to host and bark beetle semiochemicals. Journal of Applied Entomology 128, 633638.CrossRefGoogle Scholar
Poland, T.M. & Borden, J.H. (1994) Semiochemical-based communication in interspecific interactions between Ips pini (Say) and Pityogenes knechteli (Swaine) (Coleoptera, Scolytidae) in lodgepole pine. Canadian Entomologist 126, 269276.Google Scholar
Pureswaran, D.S. & Sullivan, B.T. (2012) Semiochemical emission from individual galleries of the Southern Pine Beetle, (Coleoptera: Curculionidae: Scolytinae), attacking standing trees. Journal of Economic Entomology 105, 140148.CrossRefGoogle ScholarPubMed
Raffa, K.F. (2001) Mixed messages across multiple trophic levels: the ecology of bark beetle chemical communication systems. Chemoecology 11, 4965.Google Scholar
Raffa, K.F. & Berryman, A.A. (1983) The role of host plant-resistance in the colonization behavior and ecology of bark beetles (Coleoptera: Scolytidae). Ecological Monographs 53, 2749.Google Scholar
Raffa, K.F. & Klepzig, K.D. (1989) Chiral escape of bark beetles from predators responding to a bark beetle pheromone. Oecologia 80, 566569.Google Scholar
Reeve, J.D. (1997) Predation and bark beetle dynamics. Oecologia 112, 4854.Google Scholar
Reeve, J.D. & Strom, B.L. (2004) Statistical problems encountered in trapping studies of scolytids and associated insects. Journal of Chemical Ecology 30, 15751590.Google Scholar
Roelofs, W.L. (1978) Threshold hypothesis for pheromone perception. Journal of Chemical Ecology 4, 685699.Google Scholar
Ross, D.W. & Daterman, G.E. (1995) Efficacy of an antiaggregation pheromone for reducing Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins (Coleoptera: Scolytidae), infestation in high risk stands. Canadian Entomologist 127, 805811.Google Scholar
Santolamazza-Carbone, S., Pestaña, M. & Vega, J.A. (2011) Post-fire attractiveness of maritime pines (Pinus pinaster Ait.) to xylophagous insects. Journal of Pest Science 84, 343353.Google Scholar
Schlyter, F., Svensson, M., Zhang, Q.H., Knizek, M., Krokene, P., Ivarsson, P. & Birgersson, G. (2001) A model for peak and width of signaling windows: Ips duplicatus and Chilo partellus pheromone component proportions – does response have a wider window than production? Journal of Chemical Ecology 27, 14811511.Google Scholar
Schroeder, L.M. & Weslien, J. (1994 a) Interactions between the phloem-feeding species Tomicus piniperda (Col, Scolytidae) and Acanthocinus aedilis (Col, Cerambycidae), and the predator Thanasimus formicarius (Col, Cleridae) with special reference to brood production. Entomophaga 39, 149157.CrossRefGoogle Scholar
Schroeder, L.M. & Weslien, J. (1994 b) Reduced offspring production in bark beetle Tomicus piniperda in pine bolts baited with ethanol and alpha-pinene, which attract antagonistic insects. Journal of Chemical Ecology 20, 14291444.CrossRefGoogle Scholar
Seybold, S., Huber, D., Lee, J., Graves, A. & Bohlmann, J. (2006) Pine monoterpenes and pine bark beetles: a marriage of convenience for defense and chemical communication. Phytochemistry Reviews 5, 143178.CrossRefGoogle Scholar
Seybold, S.J., Teale, S.A., Wood, D.L., Zhang, A.J., Webster, F.X., Lindahl, K.Q. & Kubo, I. (1992) The role of lanierone in the chemical ecology of Ips pini (Coleoptera, Scolytidae) in California. Journal of Chemical Ecology 18, 23052329.Google Scholar
Strom, B.L., Roton, L.M., Goyer, R.A. & Meeker, J.R. (1999) Visual and semiochemical disruption of host finding in the southern pine beetle. Ecological Applications 9, 10281038.Google Scholar
Teale, S.A. & Lanier, G.N. (1991) Seasonal variability in response of Ips pini (Coleoptera, Scolytidae) to Ipsdienol in New York. Journal of Chemical Ecology 17, 11451158.Google Scholar
Teale, S.A., Hager, B.J. & Webster, F.X. (1994) Pheromone-based assortative mating in a bark beetle. Animal Behaviour 48, 569578.Google Scholar
The R Development Core Team (2011). R: A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing.Google Scholar
Vité, J.P., Bakke, A. & Renwick, J.A.A. (1972) Pheromones in Ips (Col.: Scolytidae) – occurrence and production. Canadian Entomologist 104, 19671975.Google Scholar
Vité, J.P., Bakke, A. & Hughes, P.R. (1974) sex attractant of bark beetles, Ips sexdentatus. Naturwissenschaften 61, 365366.Google Scholar
Vité, J.P., Ohloff, G. & Billings, R.F. (1978) Pheromonal chirality and integrity of aggregation response in southern species of bark beetle Ips sp. Nature 272, 817818.Google Scholar
Wermelinger, B. (2002) Development and distribution of predators and parasitoids during two consecutive years of an Ips typographus (Col., Scolytidae) infestation. Journal of Applied Entomology 126, 521527.Google Scholar
Wermelinger, B. (2004) Ecology and management of the spruce bark beetle Ips typographus – a review of recent research. Forest Ecology and Management 202, 6782.Google Scholar
Weslien, J. (1994) Interactions within and between species at different densities of the bark beetle Ips typographus and its predator Thanasimus formicarius. Entomologia Experimentalis et Applicata 71, 133143.Google Scholar
Wood, D.L. (1982) The role of pheromones, kairomones, and allomones in the host selection and colonization behavior of bark beetles. Annual Review of Entomology 27, 411446.CrossRefGoogle Scholar