Article contents
Sex-biased response in activity to light sources with different spectral composition in geometrid moths with flightless females (Lepidoptera: Geometridae)
Published online by Cambridge University Press: 28 April 2016
Abstract
Geometrid moths occurring in late autumn and early spring in temperate forest habitats are often harmful defoliators of deciduous stands. Their populations can cause locally cyclic outbreaks and thus preventive monitoring actions have been developed, mainly based on pheromone attraction of males. Females are mostly flightless with reduced or lost wings and reduced senses associated with flying. Males are standard flyers with well-developed eyes and must be able to deal with rapidly changing light conditions during their activity. Although such differences indicate sex-biased differences in reactions to light, this has been insufficiently tested. In conditions of an experimental arena and using light-emitting diodes, we tested the different reactions of the sexes for nine species to precisely defined short segments of the electromagnetic spectrum in the range 360–660 nm. Across all species, males preferred shorter wavelengths up to 500 nm, while females were nonselective and generally less active. The sexes differed by eye size and body mass, with males having significantly larger eyes and lower body mass. Between brachypterous and apterous females, the former had larger eye size, while body mass differences were statistically insignificant. There were differences between the sexes in move-to-light reactions and changes in eye size and body mass in line with wing reduction. While males preferred a relatively distinct range of shorter wavelengths, a method of attraction to lights with distinct narrow spectra could be used markedly to enhance the established methods of forest pest monitoring, either alone or in combination with chemical male attraction.
Keywords
- Type
- Research Papers
- Information
- Copyright
- Copyright © Cambridge University Press 2016
References
- 3
- Cited by