Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Hill, S. M.
and
Crampton, J. M.
1994.
DNA-based methods for the identification of insect vectors.
Annals of Tropical Medicine & Parasitology,
Vol. 88,
Issue. 3,
p.
227.
Brown, W.V
Morton, R
Lacey, M.J
Spradbery, J.P
and
Mahon, R.J
1998.
Identification of the Geographical Source of Adults of the Old World Screw-Worm Fly, Chrysomya bezziana Villeneuve (Diptera: Calliphoridae), by Multivariate Analysis of Cuticular Hydrocarbons.
Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology,
Vol. 119,
Issue. 2,
p.
391.
Sharpe, R. G.
Hims, M. M.
Harbach, R. E.
and
Butlin, R. K.
1999.
PCR‐based methods for identification of species of the Anopheles minimus group: allele‐specific amplification and single‐strand conformation polymorphism.
Medical and Veterinary Entomology,
Vol. 13,
Issue. 3,
p.
265.
Mukabayire, O.
Caridi, J.
Wang, X.
Touré, Y. T.
Coluzzi, M.
and
Besansky, N. J.
2001.
Patterns of DNA sequence variation in chromosomally recognized taxa of Anopheles gambiae: evidence from rDNA and single‐copy loci.
Insect Molecular Biology,
Vol. 10,
Issue. 1,
p.
33.
Black, W. C.
and
Lanzaro, G. C.
2001.
Distribution of genetic variation among chromosomal forms of Anopheles gambiae s.s.: introgressive hybridization, adaptive inversions, or recent reproductive isolation?.
Insect Molecular Biology,
Vol. 10,
Issue. 1,
p.
3.
Anyanwu, G. I.
Davies, D. H.
Molyneux, D. H.
and
Priestman, A.
2001.
Cuticular-hydrocarbon discrimination betweenAnopheles gambiaes.s. andAn. arabiensislarval karyotypes.
Annals of Tropical Medicine & Parasitology,
Vol. 95,
Issue. 8,
p.
843.
Wondji, C.
Simard, F.
and
Fontenille, D.
2002.
Evidence for genetic differentiation between the molecular forms M and S within the Forest chromosomal form of Anopheles gambiae in an area of sympatry.
Insect Molecular Biology,
Vol. 11,
Issue. 1,
p.
11.
Donnelly, Martin J
Simard, Frédéric
and
Lehmann, Tovi
2002.
Evolutionary studies of malaria vectors.
Trends in Parasitology,
Vol. 18,
Issue. 2,
p.
75.
Krzywinski, Jaroslaw
and
Besansky, Nora J.
2003.
Molecular Systematics ofAnopheles: From Subgenera to Subpopulations.
Annual Review of Entomology,
Vol. 48,
Issue. 1,
p.
111.
Tripet, Frédéric
Dolo, Guimogo
Traoré, Sheik
and
Lanzaro, Gregory C.
2004.
The "Wingbeat Hypothesis" of Reproductive Isolation Between Members of theAnopheles gambiaeComplex (Diptera: Culicidae) Does Not Fly.
Journal of Medical Entomology,
Vol. 41,
Issue. 3,
p.
375.
Caputo, Beniamino
Dani, Francesca R.
Horne, Gill L.
Petrarca, Vincenzo
Turillazzi, Stefano
Coluzzi, Mario
Priestman, Angela A.
and
della Torre, Alessandra
2005.
Identification and composition of cuticular hydrocarbons of the major Afrotropical malaria vector Anopheles gambiae s.s. (Diptera: Culicidae): analysis of sexual dimorphism and age‐related changes.
Journal of Mass Spectrometry,
Vol. 40,
Issue. 12,
p.
1595.
Caputo, B.
Dani, F.R.
Horne, G.L.
N’Fale, S.
Diabate, A.
Turillazzi, S.
Coluzzi, M.
Costantini, C.
Priestman, A.A.
Petrarca, V.
and
della Torre, A.
2007.
Comparative analysis of epicuticular lipid profiles of sympatric and allopatric field populations of Anopheles gambiae s.s. molecular forms and An. arabiensis from Burkina Faso (West Africa).
Insect Biochemistry and Molecular Biology,
Vol. 37,
Issue. 4,
p.
389.
Lehmann, Tovi
and
Diabate, Abdoulaye
2008.
The molecular forms of Anopheles gambiae: A phenotypic perspective.
Infection, Genetics and Evolution,
Vol. 8,
Issue. 5,
p.
737.
Arcaz, Arthur C.
Huestis, Diana L.
Dao, Adama
Yaro, Alpha S.
Diallo, Moussa
Andersen, John
Blomquist, Gary J.
and
Lehmann, Tovi
2016.
Desiccation tolerance in Anopheles coluzzii: the effects of spiracle size and cuticular hydrocarbons.
Journal of Experimental Biology,
Sanou, Antoine
Moussa Guelbéogo, W.
Nelli, Luca
Hyacinth Toé, K.
Zongo, Soumanaba
Ouédraogo, Pierre
Cissé, Fatoumata
Mirzai, Nosrat
Matthiopoulos, Jason
Sagnon, N’falé
and
Ferguson, Heather M.
2019.
Evaluation of mosquito electrocuting traps as a safe alternative to the human landing catch for measuring human exposure to malaria vectors in Burkina Faso.
Malaria Journal,
Vol. 18,
Issue. 1,
Mozūraitis, Raimondas
Hajkazemian, Melika
Zawada, Jacek W.
Szymczak, Joanna
Pålsson, Katinka
Sekar, Vaishnovi
Biryukova, Inna
Friedländer, Marc R.
Koekemoer, Lizette L.
Baird, J. Kevin
Borg-Karlson, Anna-Karin
and
Emami, S. Noushin
2020.
Male swarming aggregation pheromones increase female attraction and mating success among multiple African malaria vector mosquito species.
Nature Ecology & Evolution,
Vol. 4,
Issue. 10,
p.
1395.