Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T20:05:43.924Z Has data issue: false hasContentIssue false

Unusual host selection in Amblycerus dispar larvae (Coleoptera: Chrysomelidae: Bruchinae) and its potential impact on stored almonds (Prunus dulcis)

Published online by Cambridge University Press:  16 April 2021

Federico A. Agrain*
Affiliation:
Laboratorio de Entomología, Instituto Argentino de Investigaciones de Zonas Áridas (IADIZA), CCT Mendoza CONICET, C.C. 507, 5500Mendoza, Argentina
Santiago Hernández Del Pino
Affiliation:
Paleobiología y Paleoecología, IANIGLA, CCT-CONICET Mendoza, Avda. Ruiz Leal s/n, 5500Mendoza, Argentina
Guillermo P. López-García
Affiliation:
Laboratorio de Entomología, Instituto Argentino de Investigaciones de Zonas Áridas (IADIZA), CCT Mendoza CONICET, C.C. 507, 5500Mendoza, Argentina
Sergio Roig-Juñent
Affiliation:
Laboratorio de Entomología, Instituto Argentino de Investigaciones de Zonas Áridas (IADIZA), CCT Mendoza CONICET, C.C. 507, 5500Mendoza, Argentina Instituto de Biología Animal (IBA), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Luján de Cuyo, Almirante Brown, 500, Luján de Cuyo. C.C., 5505Mendoza, Argentina
*
Author for correspondence: Federico A. Agrain, Email: fagrain@mendoza-conicet.gov.ar

Abstract

We present the first report of Amblycerus dispar (Sharp) attacking stored almonds [Prunus dulcis (Mill.) D. A. Webb] in Argentina. A summarized diagnosis, illustrations, and photographs of the adult and mature larva are provided to facilitate identification. We performed species distribution models for A. dispar and its main host plant Geoffroea decorticans (Gillies ex Hook. & Arn.) Burkart. We include A. dispar into a previous morphological character matrix and conduct a phylogenetic analysis to infer its phylogenetic position. The evolution of host plant associations of the genus Amblycerus is herein re-analyzed. A. dispar and its main host shows high suitability areas especially in central-west Argentina and Chile, whereas for the USA, high suitability areas were found for the south-western which include the area of almond production in this country. Although the presence of A. dispar in the USA region is very unlikely, we recommend some awareness as other bruchines are present in the area. Although A. dispar is unlikely to become an economically important risk, monitoring for early detection is recommended to avoid productivity loss, especially when the native host is nearby cultivated areas. A. dispar is hypothesized to be the sister species of A. schwarzi Kingsolver. The colonization of a Rosaceae species is a novelty for this genus, being host shifts known as an important factor affecting both natural and agricultural systems.

Type
Research Paper
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiello-Lammens, ME, Boria, RA, Radosavljevic, A, Vilela, B and Anderson, RP (2015) spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541545.CrossRefGoogle Scholar
APG (2009) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161, 105121.CrossRefGoogle Scholar
APG (2016) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181, 120.CrossRefGoogle Scholar
Bivand, RS and Rundel, C (2017) rgeos: interface to geometry engine-open source (GEOS). R package version 0.3-26.Google Scholar
Bivand, RS, Pebesma, EJ and Gómez-Rubio, V (2013) Visualising spatial data. In Bivand, RS, Pebesma, E and Gómez-Rubio, V (eds), Applied Spatial Data Analysis with R, 2nd Edn. New York: Springer, pp. 59–82.CrossRefGoogle Scholar
Bremer, K (1994) Branch support and tree stability. Cladistics 10, 295304.CrossRefGoogle Scholar
Burkart, A (1952) Las Leguminosas Argentinas silvestres y cultivadas. 2 Ed. ACME. Buenos Aires, 569 pp.Google Scholar
Cazzaniga, NJ and Correge, SG (1987) Distribución y bionomia de Amblycerus caryoboriformis en la Argentina (Coleoptera: Bruchidae). Anales del Museo de Historia Natural 18, 4754.Google Scholar
Center, TD and Johnson, CD (1974) Coevolution of some seed beetles (Coleoptera: Bruchidae) and their hosts. Ecology 55, 10961103.CrossRefGoogle Scholar
De La Cruz Pérez, A, Romero Nápoles, J, Carrillo Sánchez, JL, García López, E, Grether Gónzalez, R, Sánchez Soto, S and Pérez De La Cruz, M (2013) Brúquidos (Coleoptera: Bruchidae) del estado de Tabasco, México. Acta Zoológica Mexicana (n.s.) 29, 195.CrossRefGoogle Scholar
Dos Santos, AT and Riberiro-Costa, CS (2019) Rearrangements in some species groups of Amblycerus Thunberg, 1815 (Coleoptera: Chrysomelidae: Bruchinae) including keys, description of a new species, new host plant and distributional records. Zootaxa 4701, 101148.CrossRefGoogle Scholar
Faria de Carvalho, I (2016) Toxicidade de extratos de Terminalia catappa como alternativa ecológica aos pesticidas sintéticos para Spodoptera frugiperda (Lepidoptera: Noctuidae). Viçosa, Minas Gerais (Brazil). Report available at http://www.agn.ufv.br/wp-content/uploads/2017/08/Indyra_trabalho-TCC-15.11.16.pdf (accessed October 2020).Google Scholar
Fernández, GI and González, CA (2015) Beetles belonging to the family Bruchidae deposited in the entomological collection of the institute of ecology and systematics, La Habana, Cuba. Revista Colombiana de Ciencia Animal 7, 120129.CrossRefGoogle Scholar
Goloboff, PA, Farris, JS and Nixon, K (2008) TNT: a free program for phylogenetic analysis. Cladistics 24, 774786.CrossRefGoogle Scholar
González, RH, Arretz, P and Campos, L (1973) Catálogo de Plagas Agrícolas de Chile. Revista Ciencias Agrícolas (Facultad de Agronomía. Universidad de Chile) 2, 1–69.Google Scholar
Hijmans, RJ, Phillips, S, Leathwick, J and Elith, J (2015) Package ‘dismo’. https://cran.r-project.org/web/packages/dismo/dismo.pdf (accessed October 2020).Google Scholar
Janzen, DH (1971) Seed predation by animals. Annual Review of Ecology and Systematics 2, 465492.CrossRefGoogle Scholar
Janzen, DH (1975a) Interactions of seeds and their Insect predators/parasitoids in a tropical deciduous forest. In Price, PW (ed.), Evolutionary Strategies of Parasitic Insects and Mites. Boston, MA: Springer, pp. 154186.CrossRefGoogle Scholar
Janzen, DH (1975b) Intra- and interhabitat variations in Guazuma ulmifolia (Sterculiaceae) seed predation by Amblycerus cistelinus (Bruchidae) in Costa Rica. Ecology 56(4), 10091013.CrossRefGoogle Scholar
Johnson, MB (1997) Cold tolerance of legumes: effects of the December 1996 freeze on DELEPS's Tucson fields. Aridus 9, 14, 8.Google Scholar
Johnson, CD, Romero, JN and Raimúndez-Urrutia, E (2001) Ecology of Amblycerus crassipunctatus Ribeiro-Costa (Coleoptera: Bruchidae) in seeds of Humiriaceae, a new host family for bruchids, with an ecological comparison to other species of Amblycerus. Coleopterists Bulletin 55, 3748.CrossRefGoogle Scholar
Kass, JM, Vilela, B, Aiello-Lammens, ME, Muscarella, R, Merow, C and Anderson, RP (2018) Wallace: a flexible platform for reproducible modeling of species niches and distributions built for community expansion. Methods in Ecology and Evolution 9, 11511156.CrossRefGoogle Scholar
Kingsolver, JM (2004) Handbook of the Bruchidae of the United States and Canada (Insecta, Coleoptera). United States Department of Agriculture Technical Bulletin, 1912, 2 volumes. 636 pp. United States Department of Agriculture, Washington, D.C.Google Scholar
Lanyon, S (1985) Detecting internal inconsistencies in distance data. Systematic Zoology 34, 397403.CrossRefGoogle Scholar
Maddison, WP and Maddison, DR (2020) Mesquite: A Modular System for Evolutionary Analysis. Version 3.40. Available at http://mesquiteproject.org (accessed October 2020).Google Scholar
McMullen, CK (2012) Pollination of the heterostylous Galápagos native, Cordia lutea (Boraginaceae). Plant Systematics and Evolution 298, 569579.CrossRefGoogle Scholar
Messina, FJ and Peña, NM (2012) Mode of inheritance of increased host acceptance in a seed beetle. Bulletin of Entomological Research 102, 497503.CrossRefGoogle Scholar
Morrone, JJ (2014) Biogeographical regionalization of the Neotropical region. Zootaxa 3782, 1110.CrossRefGoogle Scholar
Morse, GE (2014) Bruchinae Latreille, 1802. In Leschen, RAB and Beutel, RG (ed), Arthropoda: Insecta: Coleoptera. Vol. 3: Morphology and Systematics (Phytophaga). Berlin, Boston: De Gruyter, pp. 189197.Google Scholar
Muscarella, R, Galante, PJ, Soley-Guardia, M, Boria, RA, Kass, JM, Uriarte, M and Anderson, RP (2014) ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution 5, 11981205.CrossRefGoogle Scholar
Nixon, KC (1999) WinClada Version 1.0000. Published by the author, Ithaca, New York.Google Scholar
Olson, DM and Dinerstein, E (2002) The Global 200: Priority ecoregions for global conservation. (PDF file). Annals of the Missouri Botanical Garden, 89, 125–126. The Nature Conservancy, USDA Forest Service and U.S. Geological Survey, based on Bailey, Robert G. 1995. Description of the ecoregions of the United States (2nd ed.). Misc. Pub. No. 1391, Map scale 1:7,500,000. USDA Forest Service. 108pp. The Nature Conservancy (2003), based on Wiken, E.B. (compiler). 1986. Terrestrial ecozones of Canada. Ecological Land Classification Series No. 19. Environment Canada, Hull, Que. 26 pp. + map.Google Scholar
Orrabalis, CJ, Gorostegui, HA, Calandri, EL and Guzmán, CA (2013) Obtención y caracterización de harinas elaboradas a partir del fruto maduro de Geoffroea decorticans ‘Chañar’ de la zona centro oeste de la Argentina. Natura Neotropicalis 44, 12.Google Scholar
Pebesma, EJ and Bivand, RS (2005) Classes and methods for spatial data in R. R News 5(2), 913.Google Scholar
Peterson, AT, Townsend Peterson, A, Soberón, J, Pearson, RG, Anderson, RP, Martínez-Meyer, E, Nakamura, M and Araújo, MB (2011) 7. Modeling ecological niches. In Levin, SA and Horn, HS (eds), Ecological niches and geographic distributions. Monographs in Population Biology 49. Princeton, NJ: Princeton University Press, pp. 97137.CrossRefGoogle Scholar
Pfaffenberger, GS and Johnson, CD (1976) Biosystematics of the first stage larvae of some North American Bruchidae (Coleoptera). USDA Technical Bulletin 1525, 1–75.Google Scholar
Phillips, SJ, Anderson, RP and Schapire, RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231259.CrossRefGoogle Scholar
Phillips, SJ, Anderson, RP, Dudík, M, Schapire, RE and Blair, ME (2017) Opening the black box: an open-source release of maxent. Ecography 40, 887893.CrossRefGoogle Scholar
Phillips, SJ, Dudík, M and Schapire, RE (2020) [Internet] Maxent software for modeling species niches and distributions (Version 3.4.1). Available at ttp://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed October, 2020).Google Scholar
Ramírez, N and Traveset, A (2010) Predispersal seed-predation by insects in the Venezuelan central plain: overall patterns and traits that influence its biology and taxonomic groups. Perspectives in Plant Ecology, Evolution and Systematics 12, 193209.CrossRefGoogle Scholar
R Core Development Core Team (2020) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0. Available at http://www.R-project.org (last Access October 2020).Google Scholar
Ribeiro-Costa, CS and de Souza Costa, A (2002) Comportamento de oviposição de Bruchidae (Coleoptera) predadores de sementes de Cassia leptophylla Vogel (Caesalpinaceae), morfologia dos ovos e descrição de uma nova espécie. Revista Brasileira de Zoologia 19, 305316.CrossRefGoogle Scholar
Ribeiro-Costa, CS, Almeida, LM, Caron, E, Corrêa, G, Linzmeier, AM and Dos Santos, PB (2010) Catalog of the types of some families of Coleoptera (Insecta) deposited at Coleção de Entomologia Pe. J.S. Moure, Curitiba, Brazil. Zootaxa 2535, 134.CrossRefGoogle Scholar
Ribeiro-Costa, CS, Manfio, D and Morse, G (2018) Catalog for the Brazilian Amblycerus Thunberg (Coleoptera: Chrysomelidae: Bruchinae) with taxonomic notes, host plants associations and distributional records. Zootaxa 4388, 499525.CrossRefGoogle ScholarPubMed
Rohrer, JR (1967) Prunus dulcis (Miller) D.A. Webb. Feddes Repertorium 74, 24. Available at http://beta.floranorthamerica.org/Prunus_dulcis (last access October 2020).Google Scholar
Romero, J (2004) Zabrotes maesi, a new species from Nicaragua with new distribution records for other bruchids (Coleoptera: Bruchidae: Amblycerinae). The Coleopterists Bulletin 58, 379387.CrossRefGoogle Scholar
Romero, J, Johnson, CD and Kingsolver, JM (1996) Revision of the genus Amblycerus of the United States and Mexico (Coleoptera: Bruchidae: Amblycerinae). United States Department of Agriculture Technical Bulletins 1845, 1166.Google Scholar
Romero Nápoles, J, Ayers, TJ and Johnson, CD (2002) Cladistics, bruchids and host plants; Interactions in Amblycerus (Coleoptera: Bruchidae). Acta Zoológica Mexicana (n.s.) 86, 116.Google Scholar
Sharp, D (1885) Insecta, Coleoptera, Bruchidae. Biologia Centralia Americana 5, 437504.Google Scholar
Sistema Nacional Argentino de Vigilancia y Monitoreo de plagas (2019) Prunus dulcis. Available at https://www.sinavimo.gov.ar/cultivo/prunus-dulcis (last access October 2020).Google Scholar
Sottile, F, Massaglia, S and Peano, C (2020) Ecological and economic indicators for the evaluation of almond (Prunus dulcis L.) Orchard Renewal in Sicily. Agriculture 10, 301. doi: 10.3390/agriculture10070301CrossRefGoogle Scholar
Symonds, MRE and Moussalli, A (2011) A brief guide to model selection, multimodel inference and model averaging in behavioral ecology using Akaike's information criterion. Behavioral, Ecology and Sociobiology 65, 1321.CrossRefGoogle Scholar
Terán, A (1984) Observaciones sobre Bruchidae (Coleopteraj del noroeste Argentino. VI. Estudios morfológicos y Biológicos de Amblycerus testaceus (Picj. Acta Zoológica Lilloana 37, 207217.Google Scholar
Terán, A and Muruaga de l'Argentier, S (1979) Observaciones sobre Bruchidae (Coleoptera) del noroeste argentino. II. Estudios morfológicos y biológicos de algunas espécies de Amblycerinae y Bruchinae. Acta Zoológica Lilloana 35, 435474.Google Scholar
Terán, A and Muruaga de l'Argentier, S (1981) Observaciones sobre Bruchidae (Coleoptera) del noroeste Argentino IV. Estudios morfológicos y biológicos de Amblycerus hoffmanseggi (Gyll.), Acanthoscelides comptus Kingsolver y Merobruchus bicoloripes (Pic). Acta Zoológica Lilloana 36, 6184.Google Scholar
Title, PO and Bemmels, JB (2017) ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291307.CrossRefGoogle Scholar
Tuda, M (2011) Evolutionary diversification of bruchine beetles: climate-dependent traits and development associated with pest status. Bulletin of Entomological Research 101, 415422.CrossRefGoogle ScholarPubMed
Vásquez Chan, A, Romero Nápoles, J, Torres Colín, ML, Koch Olt, SD, Yus-Ramos, R, Carrillo Sánchez, JL and Hiram Bravo, M (2011) The Bruchidae (Coleoptera) associated to seeds of Desmodium (Leguminosae: Papilionoideae). Boletín de la Sociedad Entomológica Aragonesa 49, 197205.Google Scholar
Warren, DL and Seifert, SN (2011) Ecological niche modeling in maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications 21, 335342.CrossRefGoogle ScholarPubMed
Werle, CT (2002) Insects Associated with Southern Magnolia (Magnolia grandiflora L.) in East Tennessee (Master's Thesis). University of Tennessee. 78 pp.Google Scholar
Wood, A, Haga, EB, Costa, VA and Rossi, MN (2017) Geographic distribution, large-scale spatial structure and diversity of parasitoids of the seed-feeding beetle Acanthoscelides macrophthalmus. Bulletin of Entomological Research 107, 322331.CrossRefGoogle ScholarPubMed
Yus-Ramos, R (2018) On the trophic spectrum of seed beetles (Coleoptera, Bruchidae). Proposal of a criterion for its systematization. Boletín de la Asociación española de Entomología 42, 295305.Google Scholar
Supplementary material: File

Agrain et al. supplementary material

Agrain et al. supplementary material 1

Download Agrain et al. supplementary material(File)
File 26.3 KB
Supplementary material: File

Agrain et al. supplementary material

Agrain et al. supplementary material 2

Download Agrain et al. supplementary material(File)
File 75.8 KB
Supplementary material: File

Agrain et al. supplementary material

Agrain et al. supplementary material 3

Download Agrain et al. supplementary material(File)
File 79.4 KB
Supplementary material: PDF

Agrain et al. supplementary material

Agrain et al. supplementary material 4

Download Agrain et al. supplementary material(PDF)
PDF 421.8 KB