Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T04:36:24.480Z Has data issue: false hasContentIssue false

MENAS’S CONJECTURE REVISITED

Part of: Set theory

Published online by Cambridge University Press:  08 May 2023

PIERRE MATET*
Affiliation:
LLABORATOIRE DE MATHÉMATIQUES UNIVERSITÉ DE CAEN—CNRS BP 5186 14032 CAEN CEDEX, FRANCE E-mail: pierre.matet@unicaen.fr

Abstract

In an article published in 1974, Menas conjectured that any stationary subset of can be split in many pairwise disjoint stationary subsets. Even though the conjecture was shown long ago by Baumgartner and Taylor to be consistently false, it is still haunting papers on . In which situations does it hold? How much of it can be proven in ZFC? We start with an abridged history of the conjecture, then we formulate a new version of it, and finally we keep weakening this new assertion until, building on the work of Usuba, we hit something we can prove.

Type
Articles
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, U. and Magidor, M., Cardinal arithmetic , Handbook of Set Theory , vol. 2 (M. Foreman and A. Kanamori, editors), Springer, Berlin, 2010, pp. 11491227.CrossRefGoogle Scholar
Balcar, B. and Simon, P., Disjoint refinement , Handbook of Boolean Algebras , vol. 2 (J. D. Monk and R. Bonnet, editors), North-Holland, Amsterdam, 1989, pp. 333388.Google Scholar
Baumgartner, J. E. and Taylor, A. D., Saturation properties of ideals in generic extensions. I . Transactions of the American Mathematical Society , vol. 270 (1982), pp. 557574.CrossRefGoogle Scholar
Burke, D. and Matsubara, Y., Ideals and combinatorial principles . Journal of Symbolic Logic , vol. 62 (1997), pp. 117122.CrossRefGoogle Scholar
Cummings, J., Collapsing successors of singulars . Proceedings of the American Mathematical Society , vol. 125 (1997), pp. 27032709.CrossRefGoogle Scholar
Cummings, J., Foreman, M., and Magidor, M., Squares, scales and stationary reflection . Journal of Mathematical Logic , vol. 1 (2001), pp. 3598.CrossRefGoogle Scholar
Di Prisco, C. A. and Marek, W., Some properties of stationary sets . Dissertationes Mathematicae (Rozprawy Matematyczne) , vol. 182 1982. pp. 137.Google Scholar
Donder, H. D., Koepke, P., and Levinski, J. P., Some stationary subsets of . Proceedings of the American Mathematical Society , vol. 102 (1988), pp. 10001004.Google Scholar
Eisworth, T., Successors of singular cardinals , Handbook of Set Theory (M. Foreman and A. Kanamori, editors), Springer, Berlin, 2010, pp. 12291350.CrossRefGoogle Scholar
Foreman, M., Potent axioms . Transactions of the American Mathematical Society , vol. 86 (1986), pp. 126.CrossRefGoogle Scholar
Fuchs, G. and Lambie-Hanson, C., Separating diagonal stationary reflection properties . Journal of Symbolic Logic , vol. 86 (2021), pp. 262292.CrossRefGoogle Scholar
Gitik, M., Nonsplitting subset of . Journal of Symbolic Logic , vol. 50 (1985), pp. 881894.CrossRefGoogle Scholar
Gitik, M., The strength of the failure of the singular cardinal hypothesis . Annals of Pure and Applied Logic , vol. 51 (1991), pp. 215240.CrossRefGoogle Scholar
Gitik, M., Blowing up the power of a singular cardinal of uncountable cofinality . Journal of Symbolic Logic , vol. 84 (2019), pp. 17221743.CrossRefGoogle Scholar
Hayut, Y. and Lambie-Hanson, C., Simultaneous stationary reflection and square sequences . Journal of Mathematical Logic , vol. 17 (2017), p. 1750010.CrossRefGoogle Scholar
Holz, M., Steffens, K., and Weitz, E., Introduction to Cardinal Arithmetic , Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser, Basel, 1999.CrossRefGoogle Scholar
Jech, T., Some combinatorial problems concerning uncountable cardinals . Annals of Mathematical Logic , vol. 5 (1973), pp. 165198.CrossRefGoogle Scholar
Jech, T. J., Set Theory, the Third Millenium Edition , Springer Monographs in Mathematics, Springer, Berlin, 2002.Google Scholar
Johnson, C. A., On saturated ideals and . Fundamenta Mathematicae , vol. 129 (1988), pp. 215221.CrossRefGoogle Scholar
Johnson, C. A., Some partition relations for ideals on . Acta Mathematica Hungarica , vol. 56 (1990), pp. 269282.CrossRefGoogle Scholar
Kanamori, A., The Higher Infinite , Perspectives in Mathematical Logic, Springer, Berlin, 1994.Google Scholar
Kojman, M., Exact upper bounds and their uses in set theory . Annals of Pure and Applied Logic , vol. 92 (1998), pp. 267282.CrossRefGoogle Scholar
Krueger, J., Destroying stationary sets , Israel Journal of Mathematics , vol. 147 (2005), pp. 285328.CrossRefGoogle Scholar
Kunen, K. and Pelletier, D. H., On a combinatorial property of Menas related to the partition property for measures on supercompact cardinals . Journal of Symbolic Logic , vol. 48 (1983), pp. 475481.CrossRefGoogle Scholar
Matet, P., Concerning stationary subsets of , Set Theory and Its Applications (J. Steprāns and S. Watson, editors), Lecture Notes in Mathematics, 1401, Springer, Berlin, 1989, pp. 119127.CrossRefGoogle Scholar
Matet, P., Covering for category and combinatorics on . Journal of the Mathematical Society of Japan , vol. 58 (2006), pp. 153181.CrossRefGoogle Scholar
Matet, P., Large cardinals and covering numbers . Fundamenta Mathematicae , vol. 205 (2009), pp. 4575.CrossRefGoogle Scholar
Matet, P., Weak saturation of ideals on . Mathematical Logic Quarterly , vol. 57 (2011), pp. 149165.CrossRefGoogle Scholar
Matet, P., Normal restrictions of the non-cofinal ideal on . Fundamenta Mathematicae , vol. 221 (2013), pp. 122.CrossRefGoogle Scholar
Matet, P., Ideals on associated with games of uncountable length . Archive for Mathematical Logic , vol. 54 (2015), pp. 291328.CrossRefGoogle Scholar
Matet, P., Scales with various kinds of good points . Mathematical Logic Quarterly , vol. 64 (2018), pp. 349370.CrossRefGoogle Scholar
Matet, P., Meeting numbers and pseudopowers . Mathematical Logic Quarterly , vol. 67 (2021), pp. 5976.CrossRefGoogle Scholar
Matet, P., When (vaguely) resembles $\kappa$ . Annals of Pure and Applied Logic , vol. 172 (2021), p. 102874.CrossRefGoogle Scholar
Matet, P., Applications of pcf theory to the study of ideals on . Journal of Symbolic Logic , vol. 87 (2022), pp. 967994.CrossRefGoogle Scholar
Matet, P., The secret life of $\mu$ -clubs . Annals of Pure and Applied Logic , vol. 173 (2022), p. 103162.CrossRefGoogle Scholar
Matet, P., $\mu$ -clubs of : Paradise in heaven, preprint.Google Scholar
Matet, P., Good points for scales (and more), preprint.Google Scholar
Matet, P., A short tour of Shelah’s Revised GCH theorem, preprint.Google Scholar
Matet, P., Péan, C., and Shelah, S., Cofinality of normal ideals on II . Israel Journal of Mathematics , vol. 121 (2003), pp. 89111.Google Scholar
Matet, P., Péan, C., and Shelah, S., Cofinality of normal ideals on I . Archive for Mathematical Logic , vol. 55 (2016), pp. 799834.CrossRefGoogle Scholar
Matet, P. and Shelah, S., The nonstationary ideal on for singular . Archive for Mathematical Logic , vol. 56 (2017), pp. 911934.CrossRefGoogle Scholar
Matsubara, Y., Menas’ conjecture and generic ultrapowers . Annals of Pure and Applied Logic , vol. 36 (1987), pp. 225234.CrossRefGoogle Scholar
Matsubara, Y., Consistency of Menas’s conjecture . Journal of the Mathematical Society of Japan , vol. 42 (1990), pp. 259263.CrossRefGoogle Scholar
Matsubara, Y. and Shelah, S., Nowhere precipitousness of the non-stationary ideal over . Journal of Mathematical Logic , vol. 2 (2002), pp. 8189.CrossRefGoogle Scholar
Matsubara, Y. and Shioya, M., Nowhere precipitousness of some ideals . Journal of Symbolic Logic , vol. 63 (1998), pp. 10031006.CrossRefGoogle Scholar
Menas, T. K., On strong compactness and supercompactness . Annals of Mathematical Logic , vol. 7 (1974), pp. 327359.CrossRefGoogle Scholar
Menas, T. K., A combinatorial property of . Journal of Symbolic Logic , vol. 41 (1976), pp. 225234.CrossRefGoogle Scholar
Rubin, M. and Shelah, S., Combinatorial problems on trees: Partitions, $\varDelta$ -systems and large free substrees . Annals of Pure and Applied Logic , vol. 33 (1987), pp. 4381.CrossRefGoogle Scholar
Shelah, S., Advances in cardinal arithmetic , Finite and Infinite Combinatorics in Sets and Logic (N. Sauer, R. E. Woodrow, and B. Sands, editors), Kluwer, Dordrecht, 1993, pp. 355383.CrossRefGoogle Scholar
Shelah, S., Cardinal Arithmetic , Oxford Logic Guides, vol. 29, Oxford University Press, Oxford, 1994.Google Scholar
Shelah, S., The generalized continuum hypothesis revisited . Israel Journal of Mathematics , vol. 116 (2000), pp. 285321.CrossRefGoogle Scholar
Shelah, S., On what I do not understand (and have something to say): Part I . Fundamenta Mathematicae , vol. 166 (2000), pp. 182.CrossRefGoogle Scholar
Shelah, S., On the existence of large subsets of which contain no unbounded non-stationary subsets . Archive for Mathematical Logic , vol. 41 (2002), pp. 207213.CrossRefGoogle Scholar
Shelah, S., Reflection implies the SCH . Fundamenta Mathematicae , vol. 198 (2008), pp. 95111.CrossRefGoogle Scholar
Shelah, S., Analytical guide and updates to cardinal arithmetic, online document. Version 25 July 2005.Google Scholar
Shioya, M., A saturated stationary subset of ${\mathbf{\mathcal{P}}}_{\kappa }{\kappa}^{+}$ . Mathematical Research Letters , vol. 10 (2003), pp. 493500.CrossRefGoogle Scholar
Sinapova, D., A model for a very good scale and a bad scale . Journal of Symbolic Logic , vol. 73 (2008), pp. 13611372.CrossRefGoogle Scholar
Solovay, R. M., Real-valued measurable cardinals , Axiomatic Set Theory (D. S. Scott, editor), Proceedings of Symposia in Pure Mathematics, vol. 13, part 1, American Mathematical Society, Providence, 1971, pp. 397428.CrossRefGoogle Scholar
Usuba, T., Local saturation of the non-stationary ideal over . Annals of Pure and Applied Logic , vol. 149 (2007), pp. 100123.CrossRefGoogle Scholar
Usuba, T., Splitting stationary sets in for with small cofinality . Fundamenta Mathematicae , vol. 205 (2009), pp. 265287.CrossRefGoogle Scholar