Hostname: page-component-7857688df4-jlx94 Total loading time: 0 Render date: 2025-11-12T08:52:24.365Z Has data issue: false hasContentIssue false

FEFERMAN’S COMPLETENESS THEOREM

Published online by Cambridge University Press:  10 January 2025

FEDOR PAKHOMOV
Affiliation:
VAKGROEP WISKUNDE: ANALYSE LOGICA EN DISCRETE WISKUNDE UNIVERSITEIT GENT AND STEKLOV MATHEMATICAL INSTITUTE OF RUSSIAN ACADEMY OF SCIENCES GENT, BELGIUM AND MOSCOW, RUSSIA E-mail: fedor.pakhomov@ugent.be URL: https://homepage.mi-ras.ru/~pakhfn/
MICHAEL RATHJEN
Affiliation:
SCHOOL OF MATHEMATICS, UNIVERSITY OF LEEDS LEEDS, UK E-mail: m.rathjen@leeds.ac.uk URL: http://www1.maths.leeds.ac.uk/~rathjen/rathjen.html
DINO ROSSEGGER*
Affiliation:
INSTITUT FÜR DISKRETE MATHEMATIK UND GEOMETRIE TECHNISCHE UNIVERSITÄT WIEN, VIENNA, AUSTRIA URL: https://drossegger.github.io/

Abstract

Feferman proved in 1962 [6] that any arithmetical theorem is a consequence of a suitable transfinite iteration of full uniform reflection of $\mathsf {PA}$. This result is commonly known as Feferman’s completeness theorem. The purpose of this paper is twofold. On the one hand this is an expository paper, giving two new proofs of Feferman’s completeness theorem that, we hope, shed light on this mysterious and often overlooked result. On the other hand, we combine one of our proofs with results from computable structure theory due to Ash and Knight to give sharp bounds on the order types of well-orders necessary to attain the completeness for levels of the arithmetical hierarchy.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ash, C. J. and Knight, J. F., Computable Structures and the Hyperarithmetical Hierarchy , Stud. Logic Found. Math., vol. 144, North-Holland Publishing Co., Amsterdam, 2000.Google Scholar
Ash, C. J. and Knight, J. F., Pairs of recursive structures . Annals of Pure and Applied Logic , vol. 46 (1990), no. 3, pp. 211234.Google Scholar
Ash, C. J., A construction for recursive linear orderings . The Journal of Symbolic Logic , vol. 56 (1991), no. 2, pp. 673683.Google Scholar
Beklemishev, L. D., Proof-theoretic analysis by iterated reflection . Archive for Mathematical Logic , vol. 42 (2003), no. 6, pp. 515552.Google Scholar
Beklemishev, L. D., Proof theoretic analysis by iterated reflection , Turing’s Revolution , (Sommaruga, G. and Strahm, T. editor) Turing’s Revolution. Birkhäfuser, Cham. Springer, 2015, pp. 225270. https://doi.org/10.1007/978-3-319-22156-4_9 Google Scholar
Feferman, S., Transfinite recursive progressions of axiomatic theories . The Journal of Symbolic Logic , vol. 27 (1962), no. 3, pp. 259316.Google Scholar
Fellner, S. M., Recursiveness and finite axiomatizability of linear orderings , Ph.D. thesis, Rutgers The State University of New Jersey, New Brunswick, 1977.Google Scholar
Fenstad, J. E., On the completeness of some transfinite recursive progressions of axiomatic theories . The Journal of Symbolic Logic , vol. 33 (1968), pp. 6976.Google Scholar
Franzén, T., Transfinite progressions: A second look at completeness . The Bulletin of Symbolic Logic , vol. 10 (2004), no. 3, pp. 367389.Google Scholar
Löb, M. H., Solution of a problem of Leon Henkin . The Journal of Symbolic Logic , vol. 20 (1955), no. 2, pp. 115118.Google Scholar
Mints, G. E., The universality of the canonical tree . Soviet Mathematical Doklady , vol. 17 (1976), p. 2.Google Scholar
Pakhomov, F. N. and Walsh, J., Reflection ranks and ordinal analysis . The Journal of Symbolic Logic , vol. 86 (2021), no. 4 pp. 13501384.Google Scholar
Savitt, S., Jens Erik Fenstad. On the completeness of some transfinite recursive progressions of axiomatic theories. The journal of symbolic logic, vol. 33 (1968), pp. 69–76. The Journal of Symbolic Logic , vol. 34 (1969), no. 1, pp. 131131.Google Scholar
Schütte, K., Ein System des verknüpfenden Schliessens . Archiv f ü r Mathematische Logik und Grundlagenforschung , vol. 2 (1956), pp. 5567.Google Scholar
Schwichtenberg, H., Proof theory: Some applications of cut-elimination , In Handbook of Mathematical Logic , vol. 90 Stud. Logic Found. Math. North-Holland, Amsterdam, 1977, pp. 867895.Google Scholar
Schmerl, U. R., A fine structure generated by reflection formulas over primitive recursive arithmetic , Studies in Logic and the Foundations of Mathematics , In Logic Colloquium ‘78 (Mons, 1978) vol. 97, Amsterdam-New York, Elsevier, 1979, pp. 335350.Google Scholar
Shoenfield, J. R., On a restricted $\omega$ -rule . L’Académie Polonaise des Sciences. Bulletin. Série des Sciences Mathématiques, Astronomiques et Physiques , vol. 7 (1959), pp. 405407.Google Scholar
Simpson, S. G., Subsystems of Second Order Arithmetic , Second. Perspectives in Logic. Cambridge University Press, Cambridge; Association for Symbolic Logic, Poughkeepsie, NY, 2009. https://doi.org/10.1017/CBO9780511581007.Google Scholar
Soare, R. I., Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets , Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1987. https://doi.org/10.1007/978-3-662-02460-7.Google Scholar
Sundholm, G., Proof theory: A survey of the omega rule , Ph.D. dissertation, University of Oxford,Oxford, 1983.Google Scholar
Tait, W. W., Normal derivability in classical logic , The Syntax and Semantics of Infinitary Languages (Barwise, J., editor), Lecture Notes in Mathematics, vol. 72, Springer, Berlin, Heidelberg, (1968). https://doi.org/10.1007/BFb0079691.Google Scholar
Turing, A. M., Systems of logic based on ordinals . Proceedings of the London Mathematical Society, Series 2 , vol. 45 (1939), pp. 161228.Google Scholar