Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T08:16:35.641Z Has data issue: false hasContentIssue false

Zermelo's Cantorian Theory of Systems of Infinitely Long Propositions

Published online by Cambridge University Press:  15 January 2014

R. Gregory Taylor*
Affiliation:
Trinity College, Hartford, CT 06106, USA, E-mail: Gregory.Taylor@trincoll.edu, URL: http://www2.trincoll.edu/~rtaylor

Abstract

In papers published between 1930 and 1935, Zermelo outlines a foundational program, with infinitary logic at its heart, that is intended to (1) secure axiomatic set theory as a foundation for arithmetic and analysis and (2) show that all mathematical propositions are decidable. Zermelo's theory of systems of infinitely long propositions may be termed “Cantorian” in that a logical distinction between open and closed domains plays a signal role. Well-foundedness and strong inaccessibility are used to systematically integrate highly transfinite concepts of demonstrability and existence. Zermelo incompleteness is then the analogue of the Problem of Proper Classes, and the resolution of these two anomalies is similarly analogous.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Barwise, J., Infinitary logics, Modern logic—a survey (Agazzi, E., editor), D. Reidel, Dordrecht, 1981, pp. 93112.CrossRefGoogle Scholar
[2] Brouwer, L. E. J., Über Definitionsbereiche von Funktionen, Mathematische Annalen, vol. 47 (1927), pp. 6075.Google Scholar
[3] Cantor, Georg, Über unendliche lineare Punktmannigfaltigkeiten 5, Mathematische Annalen, vol. 21 (1883), pp. 545–86. (Reprinted in [4], pp. 165–208. Page references are to [4].)CrossRefGoogle Scholar
[4] Cantor, Georg, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts (Zermelo, E., editor), Springer-Verlag, Berlin, 1932.Google Scholar
[5] Church, Alonzo, Alternatives to Zermelo's assumption, Transactions of the American Mathematical Society, vol. 29 (1926), pp. 178208.Google Scholar
[6] Dawson, John W., Completing the Gödel—Zermelo correspondence, Historia mathematica, vol. 12 (1985), pp. 6670.Google Scholar
[7] Ewald, William (editor), From Kant to Hilbert: a source book in the foundations of mathematics, Clarendon Press, Oxford, 1996, in two volumes.Google Scholar
[8] Gödel, Kurt, Some basic theorems on the foundations of mathematics and their philosophical implications, (This is the text, unpublished during Gödel's lifetime, of his Gibbs Lecture, delivered at Brown University in December 1951. It appears in [11], vol. III, pp. 290323, where the adjective “philosophical” is missing from the title.).Google Scholar
[9] Gödel, Kurt, Über die Vollständigkeit der Axiome des Logikkalküls, Ph.D. thesis , University of Vienna, 1929, (Reprinted, with English translation on facing pages, in [11], vol. I, pp. 60101.).Google Scholar
[10] Gödel, Kurt, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, Monatshefte für Mathematik und Physik, vol. 38 (1931), pp. 173–98, (Translated as On formally undecidable propositions of Principia Mathematica and related systems I in [21], pp. 596–616 and in [11], vol. I, pp. 145–95.).Google Scholar
[11] Gödel, Kurt, Collected works (Feferman, Solomon et al., editors), Oxford University Press, New York, 19861995, in three volumes.Google Scholar
[12] Grattan-Guinness, Ivor, In memoriam Kurt Gödel: his 1931 correspondence with Zermelo on his incompletability theorem, Historia mathematica, vol. 6 (1979), pp. 294304.Google Scholar
[13] Hallett, Michael, Introductory note to 26: Ernst Friedrich Ferdinand Zermelo (1871–1953), in [7], pp. 1208–18.Google Scholar
[14] Kreisel, Georg, Principles of proof and ordinals implicit in given concepts, Intuitionism and proof theory: proceedings of the summer conference at Buffalo N. Y., 1968 (Myhill, J., Kino, A., and Vesley, R. E., editors), North–Holland, Amsterdam, 1970, pp. 489516.Google Scholar
[15] Lakatos, Imre, Proofs and refutations: the logic of mathematical discovery (Worrall, John and Zahar, Elie, editors), Cambridge University Press, Cambridge, 1976.CrossRefGoogle Scholar
[16] Moore, Gregory H., Beyond first-order logic: the historical interplay between mathematical logic and axiomatic set theory, History and philosophy of logic, vol. 1 (1980), pp. 95137.Google Scholar
[17] Russell, Bertrand, The principles of mathematics, Cambridge University Press, Cambridge, 1903.Google Scholar
[18] Skolem, Thoralf, Logisch—kombinatorische Untersuchungen über die Erfüllbarkeit oder Beweisbarkeit mathematischer Sätze nebst einem Theoreme über dichte Mengen, Videnskapsselskapets skrifter, I. matematisk–naturvidenskabelig klasse, vol. 4 (1920), pp. 136, (The first section of this paper is translated as Logico—combinatorial investigations in the satisfiability or provability of mathematical propositions: a simplified proof of a theorem by L. Löwenheim and generalizations of the theorem in [21], pp. 252–63.).Google Scholar
[19] Taylor, R. Gregory, Zermelo, reductionism, and the philosophy of mathematics, Notre Dame journal of formal logic, vol. 34, no. 4 (1993), pp. 539–63.Google Scholar
[20] van Dalen, Dirk and Ebbinghaus, Heinz-Dieter, Zermelo and the Skolem Paradox, this Bulletin, vol. 6 (2000), pp. 145–61.Google Scholar
[21] van Heijenoort, Jean (editor), From Frege to Gödel: a source book in mathematical logic, 1879–1931, Harvard University Press, Cambridge, 1967.Google Scholar
[22] van Rootselaar, Bob, Ernst Friedrich Ferdinand Zermelo, Dictionary of scientific biography (Gillispie, Charles Coulston et al., editors), vol. 14, Scribner, New York, 19701976, (biographical article), pp. 613–16.Google Scholar
[23] Zermelo, Ernst, Bericht an die Notgemeinschaft der deutschen Wissenschaft über meine Forschungen betreffend der Grundlagen der Mathematik, (An undated manuscript from the period 1930–33, this was published as an appendix to [16]. Pages references are to [16].).Google Scholar
[24] Zermelo, Ernst, Draft of a letter dated May 25, 1930, (Apparently written to a member of the mathematics faculty at the University of Hamburg, this document can be found in Box 6 of the Nachlaß. In [20] it is mentioned that the intended recipient is most likely Emil Artin.).Google Scholar
[25] Zermelo, Ernst, Fundierende Relationen und wohlgeschichtete Bereiche, (This is an isolated, single-page, handwritten manuscript bearing no date and containing just one paragraph from what is without question the second page of an early draft of [38]. It is found in Box 4 of the Nachlaß.).Google Scholar
[26] Zermelo, Ernst, Grundlagen einer allgemeinen Theorie der mathematischen Satzsysteme (manuscript), (This document, dated simply 1935, comprises four typewritten, double-spaced, half-sheets summarizing [38]. It is stored in Box 4 of the Nachlaß.).Google Scholar
[27] Zermelo, Ernst, Introduction to an envisioned book on set theory, (This is an undated typescript of some thirty pages, now stored in Box 3 of the Nachlaß. Circumstantial evidence suggests 1932 or so as year of composition.).Google Scholar
[28] Zermelo, Ernst, Neun Vorträge über die Grundlagen der Mathematik, (These are abstracts of lectures delivered in Warsaw during May and June 1929. The first and fourth only were published as an appendix to [16]. Page references are to [16].).Google Scholar
[29] Zermelo, Ernst, Thesen über das Unendliche in der Mathematik, (This is a one-page typescript dated July 17, 1921 and now stored in Box 4 of the Nachlaß. The text appears, in the German original and in English translation, in [20].).Google Scholar
[30] Zermelo, Ernst, Über geschlossene und offene Bereiche, (This is an unpublished ten-page typescript dated September 1930 and presently stored in Box 4 of the Nachlaß.).Google Scholar
[31] Zermelo, Ernst, Neuer Beweis für die Möglichkeit einer Wohlordnung, Mathematische Annalen, vol. 65 (1908), pp. 107–28, (Translated as A new proof of the possibility of a well-ordering in [21], pp. 183–98.).Google Scholar
[32] Zermelo, Ernst, Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels, Proceedings of the fifth international congress of mathematicians, vol. II, Cambridge, 1913, pp. 501504.Google Scholar
[33] Zermelo, Ernst, Über den Begriff der Definitheit in der Axiomatik, Fundamenta mathematicae, vol. 14 (1929), pp. 339–44.CrossRefGoogle Scholar
[34] Zermelo, Ernst, Grenzzahlen und Mengenbereiche: Neue Untersuchungen über die Grundlagen der Mengenlehre, Fundamenta mathematicae, vol. 16 (1930), pp. 2947, (Translated as On boundary numbers and domains of sets: new investigations in the foundations of set theory in [7], vol. II, pp. 1219–33. Page references are to the German original.).Google Scholar
[35] Zermelo, Ernst, Über die logische Form der mathematischen Theorien, Annales de la société polonaise de mathématiques, vol. 9 (1930), p. 187, (This is the abstract of a lecture delivered in Lwow during May 1929.).Google Scholar
[36] Zermelo, Ernst, Über Stufen der Qualifikation und die Logik des Unendlichen, Jahresbericht der Deutschen Mathematiker-Vereinigung (Angelegenheiten), vol. 41 (19311932), pp. 8588.Google Scholar
[37] Zermelo, Ernst, Über mathematische Systeme und die Logik des Unendlichen, Forschungen und Fortschritte, vol. 8 (1932), pp. 67.Google Scholar
[38] Zermelo, Ernst, Grundlagen einer allgemeinen Theorie der mathematischen Satzsysteme (Erste Mitteilung), Fundamenta mathematicae, vol. 25 (1935), pp. 136–46.Google Scholar