Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T09:40:33.077Z Has data issue: false hasContentIssue false

THE 7-REGULAR AND 13-REGULAR PARTITION FUNCTIONS MODULO 3

Published online by Cambridge University Press:  11 January 2016

ERIC BOLL*
Affiliation:
c/o Department of Mathematics, University of Wisconsin Oshkosh, Oshkosh, WI 54901-8631, USA email eaboll@gmail.com
DAVID PENNISTON
Affiliation:
Department of Mathematics, University of Wisconsin Oshkosh, Oshkosh, WI 54901-8631, USA email pennistd@uwosh.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $b_{\ell }(n)$ denote the number of $\ell$-regular partitions of $n$. In this paper we establish a formula for $b_{13}(3n+1)$ modulo $3$ and use this to find exact criteria for the $3$-divisibility of $b_{13}(3n+1)$ and $b_{13}(3n)$. We also give analogous criteria for $b_{7}(3n)$ and $b_{7}(3n+2)$.

Type
Research Article
Copyright
© 2016 Australian Mathematical Publishing Association Inc. 

References

Ahlgren, S., ‘Distribution of the partition function modulo composite integers M’, Math. Ann. 318(4) (2000), 795803.Google Scholar
Ahlgren, S. and Lovejoy, J., ‘The arithmetic of partitions into distinct parts’, Mathematika 48(1–2) (2001), 203211.CrossRefGoogle Scholar
Ahlgren, S. and Ono, K., ‘Congruence properties for the partition function’, Proc. Natl. Acad. Sci. USA 98(23) (2001), 1288212884.CrossRefGoogle ScholarPubMed
Atkin, A. O. L. and Li, W.-C., ‘Twists of newforms and pseudo-eigenvalues of W-operators’, Invent. Math. 48(3) (1978), 221243.Google Scholar
Calkin, N., Drake, N., James, K., Law, S., Lee, P., Penniston, D. and Radder, J., ‘Divisibility properties of the 5-regular and 13-regular partition functions’, Integers 8(2) (2008), #A60.Google Scholar
Dandurand, B. and Penniston, D., ‘-divisibility of -regular partition functions’, Ramanujan J. 19(1) (2009), 6370.CrossRefGoogle Scholar
Furcy, D. and Penniston, D., ‘Congruences for -regular partition functions modulo 3’, Ramanujan J. 27(1) (2012), 101108.Google Scholar
Gordon, B. and Ono, K., ‘Divisibility of certain partition functions by powers of primes’, Ramanujan J. 1(1) (1997), 2534.Google Scholar
Kani, E., ‘The space of binary theta series’, Ann. Sci. Math. Québec 36(2) (2012), 501534.Google Scholar
Lovejoy, J., ‘Divisibility and distribution of partitions into distinct parts’, Adv. Math. 158(2) (2001), 253263.Google Scholar
Lovejoy, J. and Penniston, D., ‘3-regular partitions and a modular K3 surface’, Contemp. Math. 291 (2001), 177182.CrossRefGoogle Scholar
Ono, K., ‘Distribution of the partition function modulo m’, Ann. of Math. (2) 151(1) (2000), 293307.Google Scholar
Ono, K., The Web of Modularity, CBMS Regional Conference Series in Mathematics, 102 (American Mathematical Society, Providence, RI, 2004).Google Scholar
Penniston, D., ‘Arithmetic of -regular partition functions’, Int. J. Number Theory 4(2) (2008), 295302.Google Scholar
Sturm, J., ‘On the congruence of modular forms’, Lecture Notes in Math. 1240 (1984), 275280.CrossRefGoogle Scholar
Webb, J. J., ‘Arithmetic of the 13-regular partition function modulo 3’, Ramanujan J. 25(1) (2011), 4956.CrossRefGoogle Scholar