Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T22:36:10.607Z Has data issue: false hasContentIssue false

AN ANALOGUE OF THE SCHUR–SIEGEL–SMYTH TRACE PROBLEM

Published online by Cambridge University Press:  30 August 2022

V. FLAMMANG*
Affiliation:
Département de Mathématiques, UFR MIM, UMR CNRS 7502. IECL, Université de Lorraine, site de Metz, 3 rue Augustin Fresnel BP 45112, Metz cedex 3 57073, France

Abstract

By analogy with the trace of an algebraic integer $\alpha $ with conjugates $\alpha _1=\alpha , \ldots , \alpha _d$ , we define the G-measure $ {\mathrm {G}} (\alpha )= \sum _{i=1}^d ( |\alpha _i| + 1/ | \alpha _i | )$ and the absolute ${\mathrm G}$ -measure ${\mathrm {g}}(\alpha )={\mathrm {G}}(\alpha )/d$ . We establish an analogue of the Schur–Siegel–Smyth trace problem for totally positive algebraic integers. Then we consider the case where $\alpha $ has all its conjugates in a sector $| \arg z | \leq \theta $ , $0 < \theta < 90^{\circ }$ . We compute the greatest lower bound $c(\theta )$ of the absolute G-measure of $\alpha $ , for $\alpha $ belonging to $11$ consecutive subintervals of $]0, 90 [$ . This phenomenon appears here for the first time, conforming to a conjecture of Rhin and Smyth on the nature of the function $c(\theta )$ . All computations are done by the method of explicit auxiliary functions.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre, J. and Peral, J. C., ‘The trace problem for totally positive algebraic integers’, in: Number Theory and Polynomials, London Mathematical Society Lecture Note Series, 352 (eds. McKee, J. and Smyth, C.) (Cambridge University Press, Cambridge, 2008), 119. With an appendix by Jean-Pierre Serre.Google Scholar
Flammang, V., ‘On the absolute trace of polynomials having all zeros in a sector’, Exp. Math. 17(4) (2008), 443450.CrossRefGoogle Scholar
Flammang, V., ‘On the absolute length of polynomials having all zeros in a sector’, J. Number Theory 14(3) (2014), 385401.10.1016/j.jnt.2014.04.002CrossRefGoogle Scholar
Flammang, V., ‘The house of an algebraic integer all of whose conjugates lies in a sector’, Mosc. J. Comb. Number Theory 5(4) (2015), 3952.Google Scholar
Flammang, V., ‘Une nouvelle minoration pour la trace absolue des entiers algébriques totalement positifs’, Preprint, 2019, arXiv:1907.09407.Google Scholar
Flammang, V., ‘The N-measure for algebraic integers having all their conjugates in a sector’, Rocky Mountain J. Math. 50(6) (2020), 20352045.Google Scholar
Flammang, V., ‘The S-measure for algebraic integers having all their conjugates in a sector’, Rocky Mountain J. Math. 50(4) (2020), 13131321.Google Scholar
Flammang, V., ‘A variant ${S}_2$ measure for algebraic integers all of whose conjugates lie in a sector’, Rocky Mountain J. Math. 51(4) (2021), 12391248.10.1216/rmj.2021.51.1239CrossRefGoogle Scholar
Flammang, V. and Rhin, G., ‘On the absolute Mahler measure of polynomials having all zeros in a sector. III’, Math. Comp. 84(296) (2015), 29272938.10.1090/mcom/2959CrossRefGoogle Scholar
Langevin, M., ‘Minorations de la maison et de la mesure de Mahler de certains entiers algébriques’, C. R. Math. Acad. Sci. Paris 303 (1986), 523526.Google Scholar
Rhin, G. and Smyth, C. J., ‘On the absolute Mahler measure of polynomials having all zeros in a sector’, Math. Comp. 64(209) (1995), 295304.CrossRefGoogle Scholar
Rhin, G. and Wu, Q., ‘On the absolute Mahler measure of polynomials having all zeros in a sector II’, Math. Comp. 74(249) (2004), 383388.CrossRefGoogle Scholar
Schur, I., ‘Uber die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten’, Math. Z. 1 (1918), 377402.CrossRefGoogle Scholar
Siegel, C. L., ‘The trace of totally positive and real algebraic integers’, Ann. of Math. (2) 46 (1945), 302312.CrossRefGoogle Scholar
Smyth, C. J., ‘The mean value of totally real algebraic numbers’, Math. Comp. 42 (1984), 663681.10.1090/S0025-5718-1984-0736460-5CrossRefGoogle Scholar
Smyth, C. J., ‘Totally positive algebraic integers of small trace’, Ann. Inst. Fourier (Grenoble) 33 (1984), 128.10.5802/aif.975CrossRefGoogle Scholar
Wang, C., Wu, J. and Wu, Q., ‘Totally positive algebraic integers with small trace’, Math. Comp. 90(331) (2021), 23172332.CrossRefGoogle Scholar
Wu, Q., ‘On the linear independence measure of logarithms of rational numbers’, Math. Comp. 72 (2003), 901911.CrossRefGoogle Scholar