No CrossRef data available.
Article contents
IRRATIONALITY OF ZEROS OF POLYGAMMA FUNCTIONS
Published online by Cambridge University Press: 10 February 2025
Abstract
Our work owes its origin to a recent note of Ram Murty [‘Irrationality of zeros of the digamma function’, Number Theory in Memory of Eduard Wirsing (eds. H. Maier, R. Steuding and J. Steuding) (Springer, Cham, 2023), 237–243], in which he proves that all the zeros of the digamma function are irrational with at most one possible exception. We extend this investigation to higher-order polygamma functions.
Keywords
MSC classification
- Type
- Research Article
- Information
- Copyright
- © The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.
References
Baker, A., Transcendental Number Theory (Cambridge University Press, Cambridge, 1975).CrossRefGoogle Scholar
Ball, K. and Rivoal, T., ‘Irrationalité d’une infinité de valeurs de la fonction zêta aux entiers impairs’, Invent. Math. 146 (2001), 193–207.CrossRefGoogle Scholar
Chowla, P. and Chowla, S., ‘On irrational numbers’, Norske Vid. Selsk. Skr. (Trondheim) 3 (1982), 1–5.Google Scholar
David, S., Hirata-Kohno, N. and Kawashima, M., ‘Linear forms in polylogarithms’, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 23(3) (2022), 1447–1490.Google Scholar
Fischler, S., Sprang, J. and Zudilin, W., ‘Many odd zeta values are irrational’, Compos. Math. 155 (2019), 938–952.CrossRefGoogle Scholar
Gun, S., Murty, M. R. and Rath, P., ‘On a conjecture of Chowla and Milnor’, Canad. J. Math. 63(6) (2011), 1328–1344.CrossRefGoogle Scholar
Hölder, O., ‘Über die Eigenschaft der
$\gamma$
-Funktion, keiner algebraischen Differentialgleichung zu genügen’, Math. Ann. 28 (1887), 1–13.CrossRefGoogle Scholar

Kölbig, K. S., ‘The polygamma function and derivatives of the cotangent function for rational arguments’, CERN-IT-Reports, CERN-CN-96-005.Google Scholar
Milnor, J., ‘On polylogarithms, Hurwitz zeta functions and their Kubert identities’, Enseign. Math. (2) 29 (1983), 281–322.Google Scholar
Murty, M. R., ‘Irrationality of zeros of the digamma function’, in: Number Theory in Memory of Eduard Wirsing (eds. Maier, H., Steuding, R. and Steuding, J.) (Springer, Cham, 2023), 237–243.CrossRefGoogle Scholar
Radchenko, D. and Zagier, D., ‘Arithmetic properties of the Herglotz function’, J. reine angew. Math. 797 (2023), 229–253.Google Scholar
Rivoal, T., ‘La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs’, C. R. Acad. Sci. Paris, Ser. I 331(4) (2000), 267–270.CrossRefGoogle Scholar