Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T19:29:18.223Z Has data issue: false hasContentIssue false

ON A CLOSE-TO-CONVEX ANALOGUE OF CERTAIN STARLIKE FUNCTIONS

Published online by Cambridge University Press:  22 January 2020

VASUDEVARAO ALLU*
Affiliation:
School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Bhubaneswar, PIN-752050, Odisha, India email avrao@iitbbs.ac.in
JANUSZ SOKÓŁ
Affiliation:
Faculty of Mathematics and Natural Sciences, University of Rzeszów, ul. Prof. Pigonia 1, 35-310Rzeszów, Poland email jsokol@ur.edu.pl
DEREK K. THOMAS
Affiliation:
Department of Mathematics, Swansea University, Singleton Park, SwanseaSA2 8PP, UK email d.k.thomas@swansea.ac.uk

Abstract

For $f$ analytic in the unit disk $\mathbb{D}$, we consider the close-to-convex analogue of a class of starlike functions introduced by R. Singh [‘On a class of star-like functions’, Compos. Math.19(1) (1968), 78–82]. This class of functions is defined by $|zf^{\prime }(z)/g(z)-1|<1$ for $z\in \mathbb{D}$, where $g$ is starlike in $\mathbb{D}$. Coefficient and other results are obtained for this class of functions.

Type
Research Article
Copyright
© 2020 Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Goodman, A. W., Univalent Functions, Vol. I (Mariner Publishing Co., Tampa, FL, 1983).Google Scholar
Goodman, A. W., Univalent Functions, Vol. II (Mariner Publishing Co., Tampa, FL, 1983).Google Scholar
Keogh, F. R. and Merkes, E. P., ‘A coefficient inequality for certain classes of analytic functions’, Proc. Amer. Math. Soc. 20(1) (1969), 812.CrossRefGoogle Scholar
Littlewood, J. E., Lectures on the Theory of Functions (Oxford University Press, Oxford, 1944).Google Scholar
Ma, W. C. and Minda, D., ‘A unified treatment of some special classes of unvalent functions’, in: Proceedings of the Conference on Complex Analysis, Tianjin, 1992, Lecture Notes Anal. I (International Press, Cambridge, MA, 1994), 157169.Google Scholar
Miller, S. S. and Mocanu, P. T., Differential Subordinations, Theory and Applications, Series of Monographs and Textbooks in Pure and Applied Mathematics, 225 (Marcel Dekker, New York, 2000).CrossRefGoogle Scholar
Pommerenke, Ch., Boundary Behaviour of Conformal Maps (Springer, Berlin, 1992).CrossRefGoogle Scholar
Privalov, I. I., ‘Sur les fonctions qui donnent la représentation conforme biunivoque’, Rec. Math. D. I. Soc. D. Moscou 31(3–4) (1924), 350365.Google Scholar
Singh, R., ‘On a class of star-like functions’, Compos. Math. 19(1) (1968), 7882.Google Scholar
Thomas, D. K., Tuneski, N. and Vasudevarao, A., Univalent Functions: A Primer, De Gruyter Studies in Mathematics, 69 (De Gruyter, Berlin, 2018).CrossRefGoogle Scholar