No CrossRef data available.
Published online by Cambridge University Press: 28 January 2025
Let $\{\omega _n\}_{n\geq 1}$ be a sequence of independent and identically distributed random variables on a probability space $(\Omega , \mathcal {F}, \mathbb {P})$, each uniformly distributed on the unit circle $\mathbb {T}$, and let $\ell _n=cn^{-\tau }$ for some $c>0$ and $0<\tau <1$. Let $I_{n}=(\omega _n,\omega _n+\ell _n)$ be the random interval with left endpoint $\omega _n$ and length $\ell _n$. We study the asymptotic property of the covering time $N_n(x)=\sharp \{1\leq k\leq n: x\in I_k\}$ for each $x\in \mathbb {T}$. We prove the quenched central limit theorem for the covering time, that is, $\mathbb {P}$-almost surely,
converges in law to the standard normal distribution.
This work is supported by NSFC 11901204 and 12271418.