Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T07:15:59.417Z Has data issue: false hasContentIssue false

SEQUENTIAL COLLISION-FREE OPTIMAL MOTION PLANNING ALGORITHMS IN PUNCTURED EUCLIDEAN SPACES

Published online by Cambridge University Press:  13 March 2020

CESAR A. IPANAQUE ZAPATA*
Affiliation:
Departamento de Matemática,Universidade de São Paulo, Instituto de Ciências Matemáticas e Computação – USP, Avenida Trabalhador São-carlense, 400 – Centro CEP: 13566-590 – São Carlos – SP, Brazil email cesarzapata@usp.br
JESÚS GONZÁLEZ
Affiliation:
Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados del IPN,Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Mexico City07000, México email jesus@math.cinvestav.mx

Abstract

In robotics, a topological theory of motion planning was initiated by M. Farber. We present optimal motion planning algorithms which can be used in designing practical systems controlling objects moving in Euclidean space without collisions between them and avoiding obstacles. Furthermore, we present the multi-tasking version of the algorithms.

Type
Research Article
Copyright
© 2020 Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The first author would like to thank São Paulo Research Foundation (FAPESP), Grant No. 2018/23678-6, for financial support.

References

Basabe, I., González, J., Rudyak, Y. B. and Tamaki, D., ‘Higher topological complexity and its symmetrization’, Algebr. Geom. Topol. 14(4) (2014), 21032124.CrossRefGoogle Scholar
Dold, A., Lectures on Algebraic Topology, 2nd edn (Springer, Berlin–Heidelberg, 2012).Google Scholar
Fadell, E. and Neuwirth, L., ‘Configuration spaces’, Math. Scand. 10(4) (1962), 111118.CrossRefGoogle Scholar
Farber, M., ‘Topological complexity of motion planning’, Discrete Comput. Geom. 29(2) (2003), 211221.CrossRefGoogle Scholar
Farber, M., ‘Configuration spaces and robot motion planning algorithms’, in: Combinatorial and Toric Homotopy: Introductory Lectures (eds. Darby, A., Grbic, J. and Wu, J.) (World Scientific, Singapore, 2017), 263303.CrossRefGoogle Scholar
González, J. and Grant, M., ‘Sequential motion planning of non-colliding particles in Euclidean spaces’, Proc. Amer. Math. Soc. 143(10) (2015), 45034512.CrossRefGoogle Scholar
Latombe, J.-C., Robot Motion Planning (Springer, New York, 1991).CrossRefGoogle Scholar
LaValle, S. M., Planning Algorithms (Cambridge University Press, Cambridge, 2006).CrossRefGoogle Scholar
Rudyak, Y., ‘On higher analogs of topological complexity’, Topology Appl. 157(5) (2010), 916920.CrossRefGoogle Scholar
Zapata, C. A. I. and González, J., ‘Multitasking collision-free optimal motion planning algorithms in Euclidean spaces’, Discrete Mathematics, Algorithms and Applications, to appear.Google Scholar