Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T06:56:18.854Z Has data issue: false hasContentIssue false

AN UPPER BOUND FOR THE GENERALISED GREATEST COMMON DIVISOR OF RATIONAL POINTS

Published online by Cambridge University Press:  20 January 2025

BENJAMÍN BARRIOS*
Affiliation:
Departamento de Matemáticas, Facultad de Matemáticas, Pontificia Universidad Católica de Chile, 4860 Av. Vicuña Mackenna, Macul, RM, Chile

Abstract

Let X be a smooth projective variety defined over a number field K. We give an upper bound for the generalised greatest common divisor of a point $x\in X$ with respect to an irreducible subvariety $Y\subseteq X$ also defined over K. To prove the result, we establish a rather uniform Riemann–Roch-type inequality.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supported by ANID Master’s Fellowship Folio 22221062 from Chile.

References

Ailon, N. and Rudnick, Z., ‘Torsion points on curves and common divisors of ${a}^k-1$ and ${b}^k-1$ ’, Acta Arith. 113(1) (2004), 3138.CrossRefGoogle Scholar
Bugeaud, Y., Corvaja, P. and Zannier, U., ‘An upper bound for the G.C.D. of ${a}^n-1$ and ${b}^n-1$ ’, Math. Z. 243(1) (2003), 7984.CrossRefGoogle Scholar
Corvaja, P. and Zannier, U., ‘A lower bound for the height of a rational function at $S$ -unit points’, Monatsh. Math. 144(3) (2005), 203224.CrossRefGoogle Scholar
Fulton, W., Intersection Theory, 2nd edn (Springer-Verlag, Berlin, 1998).CrossRefGoogle Scholar
García-Fritz, N. and Pastén, H., ‘A criterion for nondensity of integral points’, Bull. Lond. Math. Soc. 56(6) (2024), 19391950.CrossRefGoogle Scholar
Ghioca, D., Hsia, L.-C. and Tucker, T. J., ‘On a variant of the Ailon–Rudnick theorem in finite characteristic’, New York J. Math. 23 (2017), 213225.Google Scholar
Grieve, N., ‘Generalized GCD for toric Fano varieties’, Acta Arith. 195(4) (2020), 415428.CrossRefGoogle Scholar
Hartshorne, R., Algebraic Geometry, Graduate Texts in Mathematics, 52 (Springer-Verlag, New York–Heidelberg, 1977).CrossRefGoogle Scholar
Lazarsfeld, R., Positivity in Algebraic Geometry I. Classical Setting: Line Bundles and Linear Series, Ergebnisse der Mathematik und ihrer Grenzgebiet, 48 (Springer-Verlag, Berlin, 2004).Google Scholar
Levin, A., ‘Greatest common divisors and Vojta’s conjecture for blowups of algebraic tori’, Invent. Math. 215(2) (2019), 493533.CrossRefGoogle Scholar
Levin, A. and Wang, J. T.-Y., ‘Greatest common divisors of analytic functions and Nevanlinna theory on algebraic tori’, J. reine angew. Math. 767 (2020), 77107.CrossRefGoogle Scholar
Ostafe, A., ‘On some extensions of the Ailon–Rudnick theorem’, Monatsh. Math. 181(2) (2016), 451471.CrossRefGoogle Scholar
Pasten, H. and Wang, J. T.-Y., ‘GCD bounds for analytic functions’, Int. Math. Res. Not. IMRN 2017(1) (2017), 4795.CrossRefGoogle Scholar
Silverman, J. H., ‘Generalized greatest common divisors, divisibility sequences, and Vojta’s conjecture for blowups’, Monatsh. Math. 145(4) (2005), 333350.CrossRefGoogle Scholar
Vojta, P., Diophantine Approximations and Value Distribution Theory, Lecture Notes in Mathematics, 1239 (Springer-Verlag, Berlin, 1987).CrossRefGoogle Scholar
Wang, J. T.-Y. and Yasufuku, Y., ‘Greatest common divisors of integral points of numerically equivalent divisors’, Algebra Number Theory 15(1) (2021), 287305.CrossRefGoogle Scholar