Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T09:43:24.162Z Has data issue: false hasContentIssue false

APPLICATIONS OF LERCH’S THEOREM TO PERMUTATIONS OF QUADRATIC RESIDUES

Published online by Cambridge University Press:  10 July 2019

LI-YUAN WANG
Affiliation:
Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China email wly@smail.nju.edu.cn
HAI-LIANG WU*
Affiliation:
Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China email whl.math@smail.nju.edu.cn

Abstract

Let $n$ be a positive integer and $a$ an integer prime to $n$. Multiplication by $a$ induces a permutation over $\mathbb{Z}/n\mathbb{Z}=\{\overline{0},\overline{1},\ldots ,\overline{n-1}\}$. Lerch’s theorem gives the sign of this permutation. We explore some applications of Lerch’s result to permutation problems involving quadratic residues modulo $p$ and confirm some conjectures posed by Sun [‘Quadratic residues and related permutations and identities’, Preprint, 2018, arXiv:1809.07766]. We also study permutations involving arbitrary $k$th power residues modulo $p$ and primitive roots modulo a power of $p$.

Type
Research Article
Copyright
© 2019 Australian Mathematical Publishing Association Inc. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was supported by the National Natural Science Foundation of China (grant no. 11571162).

References

Brunyate, A. and Clark, P. L., ‘Extending the Zolotarev–Frobenius approach to quadratic reciprocity’, Ramanujan J. 37 (2015), 2550.Google Scholar
Cohen, H., A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, 138 (Springer, New York, 1993).Google Scholar
Kohl, S., Question 302865 in MathOverflow, solved by F. Ladisch and F. Petrov, available at https://mathoverflow.net/questions/302865/.Google Scholar
Lerch, M., ‘Sur un théorème de Zolotarev’, Bull. Intern. Acad. François Joseph 3 (1896), 3437.Google Scholar
Mordell, L. J., ‘The congruence ((p - 1)/2)! ≡±1(mod p)’, Amer. Math. Monthly 68 (1961), 145146.Google Scholar
Pan, H., ‘A remark on Zolotarev’s theorem’, Preprint, 2006, arXiv:0601026.Google Scholar
Sun, Z. W, ‘Quadratic residues and related permutations and identities’, Preprint, 2018, arXiv:1809.07766.Google Scholar
Szekely, G. J. (ed), Contests in Higher Mathematics (Springer, New York, 1996).Google Scholar
Zolotarev, G., ‘Nouvelle démonstration de la loi de réciprocité de Legendre’, Nouvelles Ann. Math. 11 (1872), 354362.Google Scholar