Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T18:21:14.525Z Has data issue: false hasContentIssue false

The approximate subdifferential of composite functions

Published online by Cambridge University Press:  17 April 2009

A. Jourani
Affiliation:
Université de Bourgogne Laboratoire d'analyse numérique, B.P. 138 21004 Dijon, Cedex, France
L. Thibault
Affiliation:
Université de Pau Laboratoire de Mathématiques appliquées, Avenue de l'université 64000 Pau, France
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper deals with the approximate subdifferential chain rule in a Banach space. It establishes specific results when the real-valued function is locally Lipschitzian and the mapping is strongly compactly Lipschitzian.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1993

References

[1]Borwein, J.M., ‘Stability and regular pooint of inequality systems’, J. Optim. Theory Appl. 48 (1986), 952.Google Scholar
[2]Ioffe, A.D., ‘Approximate subdifferentials of non-convex functions’, Cahier # 8120.Google Scholar
[3]Ioffe, A.D., ‘Approximate subdifferentials and applications I: The finite dimensional theory’, Trans. Amer. Math. Soc. 281 (1984), 389416.Google Scholar
[4]Ioffe, A.D., ‘Approximate subdifferentials and applications II: Functions on locally convex spaces’, Mathematika 33 (1986), 111128.Google Scholar
[5]Ioffe, A.D., ‘On subdifferentiability spaces’, Ann. New York Acad. Sci. 410 (1983), 107120.CrossRefGoogle Scholar
[6]Ioffe, A.D., ‘Approximate subdifferentials and applications III: The metric theory’, Mathematika 36 (1989), 138.Google Scholar
[7]Jourani, A. and Thibault, L., ‘The use of metric graphical regularity in approximate sub-differential calculus rules in finite dimensions’, Optimization 21 (1990), 509519.Google Scholar
[8]Jourani, A. and Thibault, L., ‘Approximations and metric regularity in mathematical programming in Banach space’, Math. Oper. Res. (to appear).Google Scholar
[9]Mordukhovich, B.S., ‘Nonsmooth analysis with nonconvex generalized differentials and dual maps’, Dokl. Akad. Nauk. USSR 28 (1984), 976979.Google Scholar
[10]Rockafellar, R.T., ‘Extensions of subgradient calculus with applications to optimization’, Nonlinear Analysis Th. Meth. Appl 9 (1985), 665698.CrossRefGoogle Scholar
[11]Thibault, L., ‘Subdifferentials of compactly Lipschitzian vector-valued functions’, Travaux du séminaire d'analyse convese 8 (1978).Google Scholar
[12]Thibault, L., ‘On subdifferentials of optimal value functions’, SIAM J. Control Optim. 29 (1991), 10191036.CrossRefGoogle Scholar