Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T07:12:08.389Z Has data issue: false hasContentIssue false

ARITHMETIC PROPERTIES OF $(k,\ell )$-REGULAR BIPARTITIONS

Published online by Cambridge University Press:  01 December 2016

LIUQUAN WANG*
Affiliation:
Department of Mathematics, National University of Singapore, Singapore, 119076 email wangliuquan@u.nus.edu, mathlqwang@163.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $B_{k,\ell }(n)$ denote the number of $(k,\ell )$-regular bipartitions of $n$. Employing both the theory of modular forms and some elementary methods, we systematically study the arithmetic properties of $B_{3,\ell }(n)$ and $B_{5,\ell }(n)$. In particular, we confirm all the conjectures proposed by Dou [‘Congruences for (3,11)-regular bipartitions modulo 11’, Ramanujan J.40, 535–540].

Type
Research Article
Copyright
© 2016 Australian Mathematical Publishing Association Inc. 

References

Andrews, G. E. and Berndt, B. C., Ramanujan’s Lost Notebook, Part I (Springer, New York, 2005).CrossRefGoogle Scholar
Andrews, G. E., Hirschhorn, M. D. and Sellers, J. A., ‘Arithmetic properties of partitions with even parts distinct’, Ramanujan J. 23(1–3) (2010), 169181.Google Scholar
Berndt, B. C., Number Theory in the Spirit of Ramanujan (American Mathematical Society, Providence, RI, 2006).CrossRefGoogle Scholar
Calkin, N., Drake, N., James, K., Law, S., Lee, P., Penniston, D. and Radder, J., ‘Divisibility properties of the 5-regular and 13-regular partition functions’, Integers 8 (2008), A60 10 pages.Google Scholar
Cui, S. P. and Gu, N. S. S., ‘Arithmetic properties of the -regular partitions’, Adv. Appl. Math. 51 (2013), 507523.CrossRefGoogle Scholar
Dandurand, B. and Penniston, D., ‘ -divisibility of -regular partition functions’, Ramanujan J. 19(1) (2009), 6370.Google Scholar
Dou, D. Q. J., ‘Congruences for (3,11)-regular bipartitions modulo 11’, Ramanujan J. 40(3) 535540.Google Scholar
Furcy, D. and Penniston, D., ‘Congruences for -regular partition functions modulo 3’, Ramanujan J. 27(1) (2012), 101108.Google Scholar
Gasper, G. and Rahman, M., Basic Hypergeometric Series, 2nd edn, Encyclopedia of Mathematics and Its Applications, 35 (Cambridge University Press, Cambridge, 2004).CrossRefGoogle Scholar
Gordon, B. and Ono, K., ‘Divisibility of certain partition functions by powers of primes’, Ramanujan J. 1(1) (1997), 2534.CrossRefGoogle Scholar
Hirschhorn, M. D. and Sellers, J. A., ‘Elementary proofs of parity results for 5-regular partitions’, Bull. Aust. Math. Soc. 81 (2010), 5863.Google Scholar
Lin, B. L. S., ‘Arithmetic of the 7-regular bipartition function modulo 3’, Ramanujan J. 37(3) (2015), 469478.Google Scholar
Lin, B. L. S., ‘An infinite family of congruences modulo 3 for 13-regular bipartitions’, Ramanujan J. 39(1) (2016), 169178.Google Scholar
Lovejoy, J., ‘The number of partitions into distinct parts modulo powers of 5’, Bull. Lond. Math. Soc. 35 (2003), 4146.Google Scholar
Lovejoy, J., ‘The divisibility and distribution of partitions into distinct parts’, Adv. Math. 158 (2001), 253263.Google Scholar
Lovejoy, J. and Penniston, D., ‘3-regular partitions and a modular K3 surface’, Contemp. Math. 291 (2001), 177182.Google Scholar
Ono, K. and Penniston, D., ‘The 2-adic behavior of the number of partitions into distinct parts’, J. Combin. Theory Ser. A 92 (2000), 138157.Google Scholar
Penniston, D., ‘Arithmetic of -regular partition functions’, Int. J. Number Theory 4 (2008), 295302.CrossRefGoogle Scholar
Radu, S., ‘An algorithmic approach to Ramanujan’s congruences’, Ramanujan J. 20(2) (2009), 215251.Google Scholar
Radu, S. and Sellers, J. A., ‘Congruence properties modulo 5 and 7 for the pod function’, Int. J. Number Theory 7(8) (2011), 22492259.Google Scholar
Wang, L., ‘Congruences for 5-regular partitions modulo powers of 5’, Ramanujan J. (2016), doi:10.1007/s11139-015-9767-8.Google Scholar
Wang, L., ‘Congruences modulo powers of 5 for two restricted bipartitions’, Ramanujan J. (2016), doi:10.1007/s11139-016-9821-1.Google Scholar
Webb, J. J., ‘Arithmetic of the 13-regular partition function modulo 3’, Ramanujan J. 25(1) (2011), 4956.CrossRefGoogle Scholar
Xia, E. X. W. and Yao, O. X. M, ‘Parity results for 9-regular partitions’, Ramanujan J. 34(1) (2014), 109117.Google Scholar