Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T15:44:10.208Z Has data issue: false hasContentIssue false

ATTACHED PRIMES OF THE TOP GENERALIZED LOCAL COHOMOLOGY MODULES

Published online by Cambridge University Press:  10 March 2009

YAN GU*
Affiliation:
Department of Mathematics, Soochow University, 215006 Suzhou, Jiangsu, People’s Republic of China (email: guyan@suda.edu.cn)
LIZHONG CHU
Affiliation:
Department of Mathematics, Soochow University, 215006 Suzhou, Jiangsu, People’s Republic of China (email: chulizhong@suda.edu.cn)
*
For correspondence; e-mail: guyan@suda.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let (R,𝔪) be a commutative Noetherian local ring, let I be an ideal of R and let M and N be finitely generated R-modules. Assume that , . First, we give the formula for the attached primes of the top generalized local cohomology module HId+n(M,N); later, we prove that if Att(HId+n(M,N))=Att(HJd+n(M,N)), then HId+n(M,N)=HJd+n(M,N).

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2009

References

[1] Amjadi, J. and Naghipour, R., ‘Cohomological dimension of generalized local cohomology modules’, Algebra Colloq. (2) 15 (2008), 303308.Google Scholar
[2] Asgharzadeh, M., Divaani-Aazar, K. and Tousi, M., ‘The finiteness dimension of local cohomology modules and its dual notion’, J. Pure Appl. Algebra 213 (2009), 321328.Google Scholar
[3] Bourbaki, N., Commutative Algebra, Elements of Mathematics (Herman, Paris/Addison-Wesley, Reading, MA, 1972).Google Scholar
[4] Brodmann, M. P. and Sharp, R. Y., Local Cohomology-An Algebraic Introduction with Geometric Applications, Cambridge Studies in Advanced Mathematics, 60 (Cambridge University Press, Cambridge, 1998).CrossRefGoogle Scholar
[5] Delfino, D. and Marley, T., ‘Cofinite modules and local cohomology’, J. Pure Appl. Algebra 121 (1997), 4552.CrossRefGoogle Scholar
[6] Dibaei, M. T. and Yassemi, S., ‘Attached primes of the top local cohomology modules with respect to an ideal’, Arch. Math. 84 (2005), 292297.Google Scholar
[7] Dibaei, M. T. and Yassemi, S., ‘Top local cohomology modules’, Algebra Colloq. (2) 14(2) (2007), 209214.Google Scholar
[8] Hartshorne, R., ‘Cohomological dimension of algebraic varieties’, Ann. of Math. 88 (1968), 403450.CrossRefGoogle Scholar
[9] Hellus, M., ‘A note on the injective dimension of local cohomology modules’, Proc. Amer. Math. Soc. 136 (2008), 23132321.CrossRefGoogle Scholar
[10] Herzog, J., Komplex Auflösungen und Dualität in der lokalen Algebra (Habilitationsschrift, Universität Regensburg, 1974).Google Scholar
[11] Macdonald, I. G. and Sharp, R. Y., ‘An elementary proof of the non-vanishing of certain local cohomology modules’, Quart. J. Math. Oxford 23 (1972), 197204.Google Scholar
[12] Mafi, A., ‘On the associated primes of generalized local cohomology modules’, Comm. Algebra (7) 34 (2006), 24892494.CrossRefGoogle Scholar
[13] Nagel, U. and Schenzel, P., ‘Cohomological annihilators and Castelnuovo Mumford regularity’, in: Commutative Algebra: Syzygies, Multiplicities, and Birational Algebra (South Hadley, MA, 1992). Providence, RI, 1994, pp. 307328.Google Scholar
[14] Yassemi, S., ‘Coassociated primes’, Comm. Algebra (4) 23 (1995), 14731498.CrossRefGoogle Scholar