Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T15:31:43.393Z Has data issue: false hasContentIssue false

A BRIEF NOTE ON SOME INFINITE FAMILIES OF MONOGENIC POLYNOMIALS

Published online by Cambridge University Press:  13 February 2019

LENNY JONES*
Affiliation:
Department of Mathematics, Shippensburg University, Shippensburg, PA 17257, USA email lkjone@ship.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Suppose that $f(x)=x^{n}+A(Bx+C)^{m}\in \mathbb{Z}[x]$, with $n\geq 3$ and $1\leq m<n$, is irreducible over $\mathbb{Q}$. By explicitly calculating the discriminant of $f(x)$, we prove that, when $\gcd (n,mB)=C=1$, there exist infinitely many values of $A$ such that the set $\{1,\unicode[STIX]{x1D703},\unicode[STIX]{x1D703}^{2},\ldots ,\unicode[STIX]{x1D703}^{n-1}\}$ is an integral basis for the ring of integers of $\mathbb{Q}(\unicode[STIX]{x1D703})$, where $f(\unicode[STIX]{x1D703})=0$.

Type
Research Article
Copyright
© 2019 Australian Mathematical Publishing Association Inc. 

References

Boyd, D. W., Martin, G. and Thom, M., ‘Squarefree values of trinomial discriminants’, LMS J. Comput. Math. 18(1) (2015), 148169.10.1112/S1461157014000436Google Scholar
Cipu, M. and Luca, F., ‘On the Galois group of the generalized Fibonacci polynomial’, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 9(1) (2001), 2738.Google Scholar
Cohen, H., A Course in Computational Algebraic Number Theory (Springer, Berlin–Heidelberg, 2000).Google Scholar
Conrad, K., ‘Totally ramified primes and Eisenstein polynomials’, Preprint, http://www.math.uconn.edu/∼kconrad/blurbs/gradnumthy/totram.pdf.Google Scholar
Dilcher, K. and Stolarsky, K. B., ‘Resultants and discriminants of Chebyshev and related polynomials’, Trans. Amer. Math. Soc. 357(3) (2005), 965981.10.1090/S0002-9947-04-03687-6Google Scholar
Gassert, T. A., ‘Chebyshev action on finite fields’, Discrete Math. 315 (2014), 8394.Google Scholar
Ireland, K. and Rosen, M., A Classical Introduction to Modern Number Theory, 2nd edn, Graduate Texts in Mathematics, 84 (Springer, New York, 1990).Google Scholar
Kedlaya, K., ‘A construction of polynomials with squarefree discriminants’, Proc. Amer. Math. Soc. 140(9) (2012), 30253033; English summary.Google Scholar
Lagarias, J., ‘Problem 99:10’, in: Western Number Theory Problems, 16 & 19 Dec 1999, Asilomar, CA (ed. Myerson, G.) , http://www.math.colostate.edu/∼achter/wntc/problems/problems2000.pdf.Google Scholar
Pasten, H., ‘The ABC conjecture, arithmetic progressions of primes and squarefree values of polynomials at prime arguments’, Int. J. Number Theory 11(3) (2015), 721737.10.1142/S1793042115500396Google Scholar
Swan, R., ‘Factorization of polynomials over finite fields’, Pacific J. Math. 12 (1962), 10991106.10.2140/pjm.1962.12.1099Google Scholar
Washington, L. C., Introduction to Cyclotomic Fields, 2nd edn, Graduate Texts in Mathematics, 83 (Springer, New York, 1997).Google Scholar