Article contents
THE CATEGORIFICATION OF THE KAUFFMAN BRACKET SKEIN MODULE OF
$ \mathbb{R} {\mathrm{P} }^{3} $
Published online by Cambridge University Press: 11 April 2013
Abstract
Khovanov homology, an invariant of links in ${ \mathbb{R} }^{3} $, is a graded homology theory that categorifies the Jones polynomial in the sense that the graded Euler characteristic of the homology is the Jones polynomial. Asaeda et al. [‘Categorification of the Kauffman bracket skein module of
$I$-bundles over surfaces’, Algebr. Geom. Topol. 4 (2004), 1177–1210] generalised this construction by defining a double graded homology theory that categorifies the Kauffman bracket skein module of links in
$I$-bundles over surfaces, except for the surface
$ \mathbb{R} {\mathrm{P} }^{2} $, where the construction fails due to strange behaviour of links when projected to the nonorientable surface
$ \mathbb{R} {\mathrm{P} }^{2} $. This paper categorifies the missing case of the twisted
$I$-bundle over
$ \mathbb{R} {\mathrm{P} }^{2} $,
$ \mathbb{R} {\mathrm{P} }^{2} \widetilde {\times } I\approx \mathbb{R} {\mathrm{P} }^{3} \setminus \{ \ast \} $, by redefining the differential in the Khovanov chain complex in a suitable manner.
MSC classification
- Type
- Research Article
- Information
- Bulletin of the Australian Mathematical Society , Volume 88 , Issue 3 , December 2013 , pp. 407 - 422
- Copyright
- Copyright ©2013 Australian Mathematical Publishing Association Inc.
References





- 2
- Cited by