Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T06:07:49.316Z Has data issue: false hasContentIssue false

Centre and norm

Published online by Cambridge University Press:  17 April 2009

J.C. Beidleman
Affiliation:
Department of Mathematics, University of Kentucky, Lexington, KY 40506–0027, United States of America
H. Heineken
Affiliation:
Department of Mathematics, National University of Ireland, Galway, Ireland
M. Newell
Affiliation:
Mathematisches Institut, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We establish a correlation between the structures of a group of power automorphisms of some group and their mutual commutator subgroup and consider the consequences for the norm of a group, and for its capability.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1]Bacon, M.R. and Kappe, L.C., ‘On capable p-groups of nilpotency class two.’, Illinois J. Math. 47 (2003), 4962.CrossRefGoogle Scholar
[2]Beyl, F.R., Felgner, U. and Schmid, P., ‘On groups occurring as central factor groups’, J. Algebra 61 (1979), 161177.Google Scholar
[3]Beyl, F.R. and Tappe, J., Group extensions, representations, and the Schur multiplicator, Lecture Notes in Mathematics 958 (Springer-Verlag, Berlin, Heidelberg, New York, 1982).CrossRefGoogle Scholar
[4]Cooper, C.D.H., ‘Power automorphisms of a group’, Math. Z. 107 (1968), 335356.CrossRefGoogle Scholar
[5]Ellis, G., ‘On the capability of groups’, Proc. Edinburgh Math. Soc. 41 (1998), 487495.Google Scholar
[6]Heineken, H., ‘Nilpotent groups of class 2 that can appear as central quotient groups’, Rend. Sem. Mat. Univ. Padova 84 (1990), 241248.Google Scholar
[7]Heineken, H. and Nikolova, D., ‘Class two nilpotent capable groups’, Bull. Austral. Math. Soc. 54 (1996), 347352.Google Scholar
[8]Kappe, W., ‘Review of [13]’, Math. Reviews 22 (1960), No. 8033.Google Scholar
[9]Kappe, W., ‘Die A-Norm einer Gruppe’, Illinois J. Math. 5 (1961), 187197.CrossRefGoogle Scholar
[10]Newell, M.L., ‘Normal and power endomorphisms of a group.’, Math. Z. 151 (1976), 139142.CrossRefGoogle Scholar
[11]Robinson, D.J.S., Finiteness conditions and generalized soluble groups, Ergebnisse der Mathematik und ihrer Grenzgebiete 63, Part 2 (Springer-Verlag, Berlin, Heidelberg, New York, 1972).Google Scholar
[12]Robinson, D.J.S., A course in the theory of groups, Graduate Texts in Mathematics, 2nd. edition (Springer-Verlag, New York, Heidelberg, Berlin, 1996).Google Scholar
[13]Schenkman, E., ‘On the norm of a group’, Illinois J. Math. 4 (1960), 396398.CrossRefGoogle Scholar
[14]Schmidt, R., Subgroup lattices of groups, de Gruyter Expositions in Mathematics 14 (Walter de Gruyter, Berlin, 1994).Google Scholar