Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T15:44:30.269Z Has data issue: false hasContentIssue false

COMPATIBLE LOCALLY CONVEX TOPOLOGIES ON NORMED SPACES: CARDINALITY ASPECTS

Published online by Cambridge University Press:  13 March 2017

ELENA MARTÍN-PEINADOR*
Affiliation:
Instituto de Matemática Interdisciplinar yDepartamento de Geometría y Topología, Universidad Complutense de Madrid, 28040 Madrid, Spain email em_peinador@mat.ucm.es
ANATOLIJ PLICHKO
Affiliation:
Institute of Mathematics, Cracow University of Technology, 31-155 Cracow, Poland email aplichko@pk.edu.pl
VAJA TARIELADZE
Affiliation:
Niko Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, 0175 Tbilisi, Georgia email vajatarieladze@yahoo.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a normed infinite-dimensional space, we prove that the family of all locally convex topologies which are compatible with the original norm topology has cardinality greater or equal to $\mathfrak{c}$.

Type
Research Article
Copyright
© 2017 Australian Mathematical Publishing Association Inc. 

Footnotes

The first author was partially supported by the Spanish Ministerio de Economía y Competitividad, projects MTM 2013-42486-P and MTM 2016-79422-P. The third author was supported by the Shota Rustaveli National Science Foundation, grant no. FR/539/5-100/13.

References

Albiac, F. and Kalton, N. J., Topics in Banach Space Theory (Springer, New York, 2006).Google Scholar
Außenhofer, L., Dikranjan, D. and Martín-Peinador, E., ‘Locally quasi-convex compatible topologies on a topological group’, Axioms 4(4) (2015), 436458; doi:10.3390/axioms4040436.CrossRefGoogle Scholar
Hájek, P., Montesinos Santalucía, V., Vanderwerff, J. and Zizler, V., Biorthogonal Systems in Banach Spaces (Springer, New York, 2008).Google Scholar
Jarchow, H., Locally Convex Spaces (Teubner, Stuttgart, 1981).CrossRefGoogle Scholar
Kiran, U., ‘An uncountable number of polar topologies and non-convex topologies for a dual pair’, Indian J. Pure Appl. Math. 8 (1977), 14561458.Google Scholar
Martín-Peinador, E. and Tarieladze, V., ‘On the set of locally convex topologies compatible with a given topology on a vector space: cardinality aspects’, J. Math. Sci. 216(4) (2016), 577579.Google Scholar
Sierpiński, W., Cardinal and Ordinal Numbers, second edition revised (Panstwowe Wydnwnictwo Naukowe, Warsaw, 1965).Google Scholar
Walker, R. C., The Stone-Čech Compactification (Springer, Berlin, 1974).CrossRefGoogle Scholar
Whitley, R., ‘Projecting m onto c 0 ’, Amer. Math. Monthly 73(3) (1966), 285286.CrossRefGoogle Scholar