Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T23:57:17.308Z Has data issue: false hasContentIssue false

DECOMPOSITIONS OF GENERALIZED COMPLETE GRAPHS

Published online by Cambridge University Press:  02 October 2009

BENJAMIN R. SMITH*
Affiliation:
School of Mathematics and Physics, The University of Queensland, Brisbane 4072, Australia (email: bsmith.maths@gmail.com)
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
PhD thesis
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2009

References

[1]Alspach, B. and Gavlas, H., ‘Cycle decompositions of K n and K nI’, J. Combin. Theory Ser. B 81 (2001), 7799.CrossRefGoogle Scholar
[2]Billington, E. J., Hoffman, D. G. and Maenhaut, B. M., ‘Group divisible pentagon systems’, Util. Math. 55 (1999), 211219.Google Scholar
[3]Cavenagh, N. J., ‘Decompositions of complete tripartite graphs into k-cycles’, Australas. J. Combin. 18 (1998), 193200.Google Scholar
[4]Hanani, H., ‘Balanced incomplete block designs and related designs’, Discrete Math. 11 (1975), 255369.CrossRefGoogle Scholar
[5]Manikandan, R. S. and Paulraja, P., ‘C p-decompositions of some regular graphs’, Discrete Math. 306 (2006), 429451.CrossRefGoogle Scholar
[6]Šajna, M., ‘Cycle decompositions III: complete graphs and fixed length cycles’, J. Combin. Des. 10 (2002), 2778.CrossRefGoogle Scholar
[7]Sotteau, D., ‘Decomposition of K m,n(K *m,n) into cycles (circuits) of length 2k’, J. Combin. Theory Ser. B 30 (1981), 7581.CrossRefGoogle Scholar