Published online by Cambridge University Press: 17 April 2009
Let ℒ be an atomic Boolean subspace lattice on a Banach space X. In this paper, we prove that if ℳ is an ideal of Alg ℒ then every derivation δ from Alg ℒ into ℳ is necessarily quasi-spatial, that is, there exists a densely defined closed linear operator T: 𝒟(T) ⊆ X → X with its domain 𝒟(T) invariant under every element of Alg ℒ, such that δ(A) x = (TA – AT) x for every A ∈ Alg ℒ and every x ∈ 𝒟(T). Also, if ℳ ⊆ ℬ(X) is an Alg ℒ-module then it is shown that every local derivation from Alg ℒ into ℳ is necessary a derivation. In particular, every local derivation from Alg ℒ into ℬ(X) is a derivation and every local derivation from Alg ℒ into itself is a quasi-spatial derivation.