1 Introduction
Let $X(p)$ be independent random variables uniformly distributed on the unit circle, where p runs over the prime numbers. The random Euler product of the Riemann zeta-function is defined by $\zeta (\sigma ,X) = \prod _p (1- ({X(p)}/{p^{\sigma }}))^{-1}$ . The behaviour of $p^{-it}$ is almost like the independent random variables $X(p)$ , which indicates that $\zeta (\sigma , X)$ should be a good model for the Riemann zeta-function.
Bohr and Jessen [Reference Bohr and Jessen1] suggested that $\log \zeta (\sigma +it)$ converges in distribution to $\log \zeta (\sigma , X)$ for $\sigma> 1/2$ . In 1994, Harman and Matsumoto [Reference Harman and Matsumoto4] studied the discrepancy between the distribution of the Riemann zeta-function and that of its random model. For fixed $\sigma $ with $1/2 <\sigma \leq 1$ and any $\varepsilon>0$ , they proved that the discrepancy
where the supremum is taken over rectangles $\mathcal {R}$ with sides parallel to the coordinate axes, satisfies the bound $D_{\sigma , \zeta } (T) \ll {1}/{(\log T)^{(4\sigma -2)/(21+8\sigma )-\varepsilon }}$ . Here, $\mathbb {P}_T (f(t) \in \mathcal {R}) := T^{-1} \text {meas}\{T \leq t \leq 2T: f(t) \in \mathcal {R}\}$ . Lamzouri et al. [Reference Lamzouri, Lester and Radziwiłł8] improved the result by showing that $D_{\sigma , \zeta } (T) \ll {1}/{(\log T)^{\sigma }}$ .
Dong et al. [Reference Dong, Wang and Zhang3] analysed the discrepancy between the distribution of values of Dirichlet L-functions and the distribution of values of random models for Dirichlet L-functions in the q-aspect. Lee [Reference Lee9] investigated the upper bound on the discrepancy between the joint distribution of L-functions on the line $\sigma = 1/2 + 1/G(T), t \in [T, 2T]$ , and that of their random models, where $\log \log T \leq G(T) \leq (\log T)/(\log \log T)^2$ .
Let f be a primitive holomorphic cusp form of weight k for ${\mathrm {SL}}_2(\mathbb {Z})$ . The normalised Fourier expansion at the cusp $\infty $ is $f(z)=\sum _{n \geq 1}\lambda _f(n)n^{{(k-1)}/{2}}e^{2\pi inz}$ , where $\lambda _f(n) \in \mathbb {R}$ , $n = 1, 2, \ldots, $ are normalised eigenvalues of Hecke operators $T(n)$ with $\lambda _f(1)=1$ , that is, $T(n)f=\lambda _f(n)f$ .
According to Deligne [Reference Deligne2], for all prime numbers p, there are complex numbers $\alpha _f(p)$ and $\beta _f(p)$ , satisfying
The function $\lambda _f(n)$ is multiplicative. Moreover, $\lambda _f(p)$ is real and satisfies Deligne’s inequality $|\lambda _f(n)| \leq d(n)$ for $n \geq 1$ , where $d(n)$ is the divisor function. In particular, $|\lambda _f(p)| \leq 2$ . For $\mathrm {Re}\, s>1$ , the L-function attached to f is defined by
For $\mathrm {Re}\, s>1$ , the Rankin–Selberg L-function associated to f is defined by
According to [Reference Iwaniec and Kowalski6], for $\mathrm {Re} s>1$ ,
where
For automorphic L-functions, from [Reference Lü10],
Recently, Xiao and Zhai [Reference Xiao and Zhai12] studied the discrepancy between the distributions of $\log L(\sigma +it,f)$ and its corresponding random variable $\log L(\sigma , f, X)$ . In this article, we investigate the discrepancy between the distribution of the random variable $\log L (\sigma , f \times f, X)$ and that of $\log L(\sigma +it, f \times f)$ . Define the Euler product
which converges almost surely for $\sigma> \tfrac 12$ . Consider
where the supremum is taken over rectangles $\mathcal {R}$ with sides parallel to the coordinate axes. We prove the following theorem.
Theorem 1.1. Let $T>3$ and $2/3 <\sigma _0 < \sigma < 1$ , where T and $\sigma _0$ are fixed. Then,
where the implied constant depends on f and $\sigma $ .
The proof follows the method in [Reference Lamzouri, Lester and Radziwiłł8]. The range of $\sigma $ depends on the zero density theorem of $L(s,f\times f)$ and $L(s, \mathrm {sym}^2f)$ by noticing that $L(s, f \times f) = \zeta (s) L(s, \mathrm {sym}^2f)$ . Unfortunately, the zero density of $L(s, \mathrm {sym}^2f)$ can only be obtained nontrivially when $2/3 < \sigma \leq 1$ (see [Reference Huang, Zhai and Zhang5]).
2 Preliminaries
This section gathers several preliminary results. Since several proofs are essentially the same as those in [Reference Lamzouri, Lester and Radziwiłł8], we omit their details. For any prime number p and integer $\nu>0$ , we define $b_f(p^{\nu }) = |\alpha _f(p)^{\nu } + \beta _f(p)^{\nu }|^2$ . Thanks to (1.1),
From probability theory, if the characteristic functions of two real-valued random variables are close, then the corresponding probability distributions are also close. The key to proving Theorem 1.1 is to demonstrate that the joint distribution characteristic function of $\mathrm {Re} \log L(\sigma + it)$ and $\mathrm {Im} \log L(\sigma + it)$ can be well estimated. For u, $v \in \mathbb {R}$ , we define
and
Lemma 2.1 [Reference Lamzouri7, Lemma 4.3].
Let $y>2$ and $|t|\geq y+3$ be real numbers. Let $\tfrac 12< \sigma _0 < \sigma \leq 1$ and suppose that the rectangle $\{s: \sigma _0 < \mathrm {Re} (s) \leq 1, |\mathrm {Im} (s) - t|\leq y+2\}$ does not contain zeros of $L(s, f \times f)$ . Then,
where $\sigma _1 = \min (\sigma _0 + {1}/{\log y}, {(\sigma + \sigma _0)}/{2})$ .
Lemma 2.2. Define $N(\sigma _0,T)$ as the number of zeros $\rho _f = \beta _f + i \gamma _f$ of $L(s, f \times f)$ with $\sigma _0 \leq \beta _f \leq 1$ and $|\gamma _f| \leq T$ . Then,
Proof. Here, $L(s, f \times f)$ can be written as $L(s, f \times f) = \zeta (s) L(s, \mathrm {sym}^2f)$ . The result is easily obtained from the zero density of the Riemann zeta-function [Reference Ye and Zhang13] and symmetric square L-functions [Reference Huang, Zhai and Zhang5].
Lemma 2.3. Let $2/3 < \sigma <1$ and $3 \leq Y \leq T/2$ . Then, for all $t \in [T, 2T]$ ,
except for a set $\mathcal {D}(T)$ with $\text {meas}(\mathcal {D}(T)) \ll _f T^{{(10/3-5/2\sigma )}/{(7/3-\sigma )}+\epsilon }Y$ .
Proof. Take $\sigma _0 = \tfrac 12 (\tfrac 23 + \sigma )$ in Lemma 2.1. The result follows easily from Lemma 2.2.
The details of the next three results can be found in [Reference Xiao and Zhai12].
Lemma 2.4. Let $2/3 < \sigma <1$ , $128 \leq y \leq z$ and $\{b(p)\}$ be any real sequence with $|b(p)| \leq 4$ . For any positive integer $k \leq {\log T}/{20 \log z}$ ,
Moreover,
Proposition 2.5. Let ${2}/{3} < \sigma < 1$ and $Y = (\log T)^A$ for a fixed $A \geq 1$ . There exist $a_1 = a_1(\sigma , A)>0$ and $a_1' = a_1'(\sigma , A)>0$ such that
and
Lemma 2.6. Let Y be a large positive real number and $|z|\leq Y^{\sigma - 1/2}$ . Then,
Moreover, if u, v are real numbers such that $|u|+|v| \leq Y^{\sigma - 1/2}$ , then
Lemma 2.7. Let $2/3 < \sigma <1$ and $Y = (\log T)^A$ for a fixed $A \geq 1$ . For any positive integer $k \leq \log T/(20 A \log \log z)$ , there exist $a_2(\sigma )> 0$ and $a_2'(\sigma )> 0$ such that
and
Here the implied constants are absolute.
Proof. By using Lemma 2.4, the lemma follows easily from the method in [Reference Lamzouri, Lester and Radziwiłł8, Lemma 3.3].
Lemma 2.8 [Reference Tsang11, Lemma 6].
Let ${2}/{3} < \sigma < 1$ and $Y = (\log T)^A$ for a fixed $A \geq 1$ . For any positive integers u, v such that $u+v \leq \log T/(6A \log \log T)$ ,
with an absolute implied constant.
Proposition 2.9. Let $2/3 < \sigma <1$ and $Y = (\log T)^A$ for a fixed $A \geq 1$ . For all complex numbers $z_1$ , $z_2$ , there exist positive constants $a_3 = a_3(\sigma ,A)>0$ and $a_4 = a_4(\sigma ,A)>0$ with $|z_1|$ , $|z_2| \leq a_3(\log T)^{\sigma }$ such that
with an absolute implied constant. Here, $\mathcal {A}(T)$ is the set of those $t \in [T, 2T]$ such that
Proof. The proof is the same as that of [Reference Lamzouri, Lester and Radziwiłł8, Proposition 2.3] by using Lemma 2.7, Proposition 2.5 and Lemma 2.8.
Proposition 2.10. Let $2/3 < \sigma _0 < \sigma <1$ and $A \geq 1$ be fixed. There exists a constant $a_5 = a_5(\sigma , A)$ such that for $|u|$ , $|v| \leq a_5 (\log T)^{\sigma }$ ,
with the implied constant depending on $\sigma _0$ only.
Proof. Follow the general idea of the proof of [Reference Lamzouri, Lester and Radziwiłł8, Theorem 2.1]. Let $B=B(A)$ be a large enough constant. Let $ Y = (\log T)^{B/(\sigma - 2/3)}$ . By Lemma 2.3,
for all $t \in [T, 2T]$ , except for a set $\mathcal {D}(T)$ of measure $T^{1-d(\sigma )}$ for some constant $d(\sigma )>0$ . Define $\mathcal {C}(T) = \{t \in [T, 2T], t \notin \mathcal {D} (T)\}$ . Then,
Let $\mathcal {A}(T)$ be defined as in Proposition 2.9 and take $z_1={i}(u-iv)/2$ and $z_2 = i(u+iv)/2$ in Proposition 2.9. From Proposition 2.5 and Lemma 2.6, the integral above is
Lemma 2.11 [Reference Lamzouri, Lester and Radziwiłł8, Lemma 7.2].
Let $\lambda>0$ be a real number. Let $\chi (y)=1$ if $y>1$ and ${0}$ otherwise. For any $c>0$ ,
We cite the following smooth approximation [Reference Lamzouri, Lester and Radziwiłł8] for the indicator function.
Lemma 2.12. Let $\mathcal {R} = \{z=x+iy \in \mathbb {C}: m_1 < x < m_2, n_1 < y < n_2\}$ for real numbers $m_1, m_2, n_1, n_2$ . Let $K>0$ be a real number. For any $z=x+iy \in \mathbb {C}$ , we denote the indicator function of $\mathcal {R}$ by
where
Here,
and
Lemma 2.13. Let $2/3 < \sigma <1$ . Let u be a large positive real number. There exist constants $a_6 = a_6(f, \sigma )$ and $a_6' = a_6'(f, \sigma )$ such that
and
Proof. Follow the general idea of the proof of [Reference Lamzouri, Lester and Radziwiłł8, Lemma 6.3]. We denote the Bessel function of order 0 by $J_0(s)$ for all $s \in \mathbb {R}$ . Note that for any prime p, $\mathbb {E} (e^{is \mathrm {Re} X(p)}) = \mathbb {E} (e^{is \mathrm {Im} X(p)}) = J_0(s)$ . Since $\log (1+t)=t+O(t^2)$ for $ |t|<1$ ,
For $|s|<1$ , we have $J_0(s) = 1 - ({s}/{2})^2 + O(s^4)$ . By using (1.2), for some constant $a_6 = a_6(f, \sigma ), c>0 $ , the product above is
The second inequality can be derived similarly.
3 Proof of the main theorem
Let $\mathcal {R}$ be a rectangle with sides parallel to the coordinate axes. Define $\Psi _T(\mathcal {R}) = \mathbb {P}(\log L(\sigma +it, f \times f) \in \mathcal {R}) \text { and } \Psi (\mathcal {R}) = \mathbb {P}(\log L(\sigma , f \times f, X) \in \mathcal {R})$ . Let
According to Lemma 2.3 and Proposition 2.5, for some constant $a_7>0$ ,
Similarly to [Reference Xiao and Zhai12], by using Lemmas 2.6 and 2.11, we can obtain the relationship between $\Psi (\mathcal {R})$ and $\Psi (\widetilde {\mathcal {R}})$ : for some constant $a_7'>0$ ,
Let $\mathcal {S}$ be the set of rectangles $\mathcal {R} \subset [-(\log T)^3, (\log T)^3]\times [-(\log T)^3, (\log T)^3]$ with sides parallel to the coordinate axes. Then,
In light of Lemma 2.12, choose $K = a_8(\log T)^{\sigma }$ , for some $a_8> 0$ , and $|m_1|, |m_2|, |n_1|, |n_2| \leq (\log T)^3$ . Then it follows that
and, in addition,
where
and
First, we treat the main term of (3.1):
where $\Phi _{\sigma ,T}$ is defined by (2.1). Since $0 \leq G(u) \leq 2/\pi $ and $|f_{\alpha , \beta }(u)| \leq \pi u |\beta - \alpha |$ , by Proposition 2.10,
Moreover,
Here,
where
and
Hence,
where
Notice that
To bound $E_1$ , we use (3.4) to rewrite (3.2):
From Proposition 2.10,
uniformly for all $m \in \mathbb {R}$ . Lemma 2.13 implies that
The bound $J_T(K, n) \ll {1}/{K}$ can be obtained using the same method. Therefore,
Then, using (2.2), (3.4) and Lemma 2.13,
uniformly for all $m \in \mathbb {R}$ . Similarly, we can obtain $J_{\mathrm {rand}} (K, n) \ll {1}/{K}$ , uniformly for all $n \in \mathbb {R}$ . Thus,
Combining the estimates with (3.3), (3.5) and (3.6),
which completes the proof.