Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T18:22:49.852Z Has data issue: false hasContentIssue false

The Dunford-Pettis property on vector-valued continuous and bounded functions

Published online by Cambridge University Press:  17 April 2009

Jose Aguayo
Affiliation:
Departamento de Matemática Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 3-C Concepción, Chile
Jose Sanchez
Affiliation:
Departamento de Matemática Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 3-C Concepción, Chile
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let X be a completely regular space, E a Banach space, Cb(X, E) the space of all continuous, bounded and E-valued functions defined on X, M(X, L(E, F)) the space of all L(E, F)-valued measures defined on the algebra generated by zero subsets of X. Weakly compact and β0-continuous operators defined from Cb(X, E) into a Banach space F are represented by integrals with respect to L(E, F)-valued measures. The strict Dunford-Pettis and the Dunford-Pettis properties are established on (Cb(X, E), βi), where βi denotes one of the strict topologies β0, β or β1, when E is a Schur space; the same properties are established on (Cb(X, E), β0), when E is an AM-space or an AL-space.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1993

References

[1]Aguayo, J. and Sanchez, J., ‘Separable measures and The Dunford-Pettis property’, Bull. Austral. Math. Soc. 43 (1991), 423428.CrossRefGoogle Scholar
[2]Bourgain, J., ‘On the Dunford-Pettis property’, Proc. Amer. Math. Soc. 81 (1981), 256272.CrossRefGoogle Scholar
[3]Choo, S., ‘Strict topologies on space of continuous vector-valued functions’, Canad. J. Math. 31 (1979), 890898.CrossRefGoogle Scholar
[4]Diestel, J. and Uhl, J., Vector measures, Survey Number 15 (American Mathematical Society, Providence, 1977).CrossRefGoogle Scholar
[5]Fontenot, R.A., ‘Strict topologies for vector-valued functions’, Canad. J. Math. 26 (1974), 831853.CrossRefGoogle Scholar
[6]Grothendieck, A., ‘Sur les applications linéaires faiblement compact d'espaces du type C(K)Canad. J. Math. 5 (1953), 129173.CrossRefGoogle Scholar
[7]Katsaras, A. and Liu, B., ‘Integral representations of weakly compact operator’, Pacific J. Math. 56 (1975), 547556.CrossRefGoogle Scholar
[8]Khurana, S.S., ‘Topologies on spaces of vector-valued continuous functions’, Trans. Amer. Math. Soc. 241 (1978), 195211.CrossRefGoogle Scholar
[9]Khurana, S.S., ‘Dunford-Pettis property’, J. Math. Anal. Appl. 65 (1978), 361364.CrossRefGoogle Scholar
[10]Schaefer, H., Banach lattices and positive operators (Springer-Verlag, Berlin, Heidelberg, New York, 1974).CrossRefGoogle Scholar
[11]Wheeler, R., ‘A survey of Baire measures and strict topologies’, Exposition Math. 29 (1983), 97190.Google Scholar