Article contents
ELEMENTS OF LARGE ORDER IN PRIME FINITE FIELDS
Published online by Cambridge University Press: 16 October 2012
Abstract
Given $f(x,y)\in \mathbb Z[x,y]$ with no common components with $x^a-y^b$ and $x^ay^b-1$, we prove that for $p$ sufficiently large, with $C(f)$ exceptions, the solutions $(x,y)\in \overline {\mathbb F}_p\times \overline {\mathbb F}_p$ of $f(x,y)=0$ satisfy $ {\rm ord}(x)+{\rm ord}(y)\gt c (\log p/\log \log p)^{1/2},$ where $c$ is a constant and ${\rm ord}(r)$ is the order of $r$ in the multiplicative group $\overline {\mathbb F}_p^*$. Moreover, for most $p\lt N$, $N$ being a large number, we prove that, with $C(f)$ exceptions, ${\rm ord}(x)+{\rm ord}(y)\gt p^{1/4+\epsilon (p)},$ where $\epsilon (p)$ is an arbitrary function tending to $0$ when $p$ goes to $\infty $.
- Type
- Research Article
- Information
- Copyright
- Copyright © 2012 Australian Mathematical Publishing Association Inc.
References
- 8
- Cited by