We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We establish an error term in the Sato–Tate theorem of Birch. That is, for $p$ prime, $q=p^{r}$ and an elliptic curve $E:y^{2}=x^{3}+ax+b$, we show that
for any interval $I\subseteq [0,\unicode[STIX]{x1D70B}]$, where the quantity $\unicode[STIX]{x1D703}_{a,b}$ is defined by $2\sqrt{q}\cos \unicode[STIX]{x1D703}_{a,b}=q+1-E(\mathbb{F}_{q})$ and $\unicode[STIX]{x1D707}_{ST}(I)$ denotes the Sato–Tate measure of the interval $I$.
Baier, S. and Zhao, L., ‘The Sato–Tate conjecture on average for small angles’, Trans. Amer. Math. Soc.361(4) (2009), 1811–1832.Google Scholar
[2]
Banks, W. D. and Shparlinski, I. E., ‘Sato–Tate, cyclicity, and divisibility statistics on average for elliptic curves of small height’, Israel J. Math.173 (2009), 253–277.Google Scholar
[3]
Birch, B. J., ‘How the number of points of an elliptic curve over a fixed prime field varies’, J. Lond. Math. Soc.43 (1968), 57–60.Google Scholar
[4]
David, C., Koukoulopoulos, D. and Smith, E., ‘Sums of Euler products and statistics on elliptic curves’, Math. Ann.368 (2017), 685–752.Google Scholar
Deligne, P., ‘La conjecture de Weil. I’, Publ. Math. Inst. Hautes Études Sci.43 (1974), 273–307.Google Scholar
[7]
Deligne, P., ‘La conjecture de Weil. II’, Publ. Math. Inst. Hautes Études Sci.52 (1980), 137–252.Google Scholar
[8]
Deuring, M., ‘Die Typen der Multiplikatorenringe elliptischer Funktionenkörper’, Abh. Math. Semin. Univ. Hambg.14 (1941), 197–272.Google Scholar
[9]
Fisher, B., ‘Equidistribution theorems’, in: Columbia University Number Theory Seminar, New York, 1992, Astérisque, 228 (Société Mathématique de France, Paris, 1995), 69–79.Google Scholar
[10]
Katz, N. M., Gauss Sums, Kloosterman Sums, and Monodromy Groups (Princeton University Press, Princeton, NJ, 1988).Google Scholar
[11]
Knightly, A. and Li, C., Traces of Hecke Operators, Mathematical Surveys and Monographs, 133 (American Mathematical Society, Providence, RI, 2006).Google Scholar
[12]
Lang, S., Introduction to Modular Forms, Fundamental Principles of Mathematical Sciences, 222 (Springer, Berlin, 1995), with appendixes by D. Zagier and Walter Feit, corrected reprint of the 1976 original.Google Scholar
[13]
Lenstra, H. W.Jr, ‘Factoring integers with elliptic curves’, Ann. of Math. (2)126(3) (1987), 649–673.Google Scholar
[14]
Michel, P., ‘Rang moyen de familles de courbes elliptiques et lois de Sato–Tate’, Monatsh. Math.120 (1995), 127–136.Google Scholar
[15]
Miller, S. J. and Ram Murty, M., ‘Effective equidistribution and the Sato–Tate law for families of elliptic curves’, J. Number Theory131 (2011), 25–44.Google Scholar
[16]
Montgomery, H. L., Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, CBMS Regional Conference Series in Mathematics, 84 (American Mathematical Society, Providence, RI, 1994).Google Scholar
[17]
Ram Murty, M., ‘Oscillations of Fourier coefficients of modular forms’, Math. Ann.262 (1983), 431–446.Google Scholar
[18]
Ram Murty, M. and Sinha, K., ‘Effective equidistribution of eigenvalues of Hecke operators’, J. Number Theory129 (2009), 681–714.Google Scholar
[19]
Niederreiter, H., ‘The distribution of values of Kloosterman sums’, Arch. Math.56 (1991), 270–277.Google Scholar
[20]
Schoof, R., ‘Nonsingular plane cubic curves over finite fields’, J. Combin. Theory Ser. A46(2) (1987), 183–211.Google Scholar
Bringmann, Kathrin
Kane, Ben
and
Pujahari, Sudhir
2024.
Odd moments for the trace of Frobenius and the Sato–Tate conjecture in arithmetic progressions.
Finite Fields and Their Applications,
Vol. 98,
Issue. ,
p.
102465.