Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T13:37:42.719Z Has data issue: false hasContentIssue false

ESTIMATION AND COMPUTATION WITH MATRICES OVER FINITE FIELDS

Published online by Cambridge University Press:  14 October 2014

BRIAN P. CORR*
Affiliation:
School of Mathematics and Statistics, The University of Western Australia, Crawley, WA 6009, Australia email brian.p.corr@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian PhD Theses
Copyright
Copyright © 2014 Australian Mathematical Publishing Association Inc. 

References

Holt, D. F. and Rees, S., ‘Testing modules for irreducibility’, J. Aust. Math. Soc. (Ser. A) 57 (1994), 116.Google Scholar
Kung, J. P. S., ‘The cycle structure of a linear transformation over a finite field’, Linear Algebra Appl. 36 (1981), 141155.Google Scholar
Leedham-Green, C. R., ‘The computational matrix group project’, in: Groups and Computation III, Vol. 8 (De Gruyter, Berlin, Boston, 2001), 229247.CrossRefGoogle Scholar
Magaard, K., O’Brien, E. A. and Seress, Á., ‘Recognition of small dimensional representations of general linear groups’, J. Aust. Math. Soc. 85 (2008), 229250.Google Scholar
Niemeyer, A. C. and Praeger, C. E., ‘Estimating proportions of elements in finite groups of Lie type’, J. Algebra 324 (2010), 122145.CrossRefGoogle Scholar
O’Brien, E. A., ‘Towards effective algorithms for linear groups’, in: Finite Geometries, Groups and Computation, Proc. Conf. Finite Geometries, Groups and Computation, Pingree Park, Colorado, USA (Walter de Gruyter, 2006), 163–190.Google Scholar
Stong, R., ‘Some asymptotic results on finite vector spaces’, Adv. Appl. Math. 9 (1988), 167199.Google Scholar