No CrossRef data available.
Published online by Cambridge University Press: 21 March 2022
In this paper, we study the extreme values of the Rankin–Selberg L-functions associated with holomorphic cusp forms in the vertical direction. Assuming the generalised Riemann hypothesis (GRH), we prove that
with $C\leq \mathscr {X}\sqrt {1-\delta }$ , where $\mathscr {X}:=({2}/{\pi })\int _{0}^{\pi /3}\sin ^2\xi \,d\xi $ and $0\leq \delta <1$ .
This work is supported by the Science and Technology Development Fund, Macau SAR (File No. 0066/2020/A2).