Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T16:36:56.957Z Has data issue: false hasContentIssue false

GROUPS WITH COMMUTING POWERS

Published online by Cambridge University Press:  13 March 2009

ROLF BRANDL*
Affiliation:
Mathematisches Institut, Am Hubland 12, 97074 Würzburg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A group G satisfies the second Engel condition [X,Y,Y ]=1 if and only if x commutes with xy, for all x,yG. This paper considers the generalization of this condition to groups G such that, for fixed positive integers r and s, xr commutes with (xs)y for all x,yG. Various general bounds are proved for the structure of groups in the corresponding variety, defined by the law [Xr,(Xs)Y]=1.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2009

References

[1] Brandl, R., ‘Zur Theorie der untergruppenabgeschlossenen Formationen: Endliche Varietäten’, J. Algebra 73 (1981), 122.Google Scholar
[2] Brandl, R. and Kappe, L. C., ‘On n-Bell groups’, Comm. Algebra 17 (1989), 787807.CrossRefGoogle Scholar
[3] Bryant, R. M. and Powell, M. B., ‘Two-variable laws for PSL(2,5)’, J. Aust. Math. Soc. 10 (1969), 499502.Google Scholar
[4] Carter, R., Fischer, B. and Hawkes, T. O., ‘Extreme classes of finite groups’, J. Algebra 9 (1968), 285313.Google Scholar
[5] Huppert, B., Endliche Gruppen, Vol. I (Springer, Berlin, 1967).CrossRefGoogle Scholar
[6] Huppert, B. and Blackburn, N., Finite Groups, Vol. II (Springer, Berlin, 1982).Google Scholar
[7] Kappe, L. C., ‘On n-Levi groups’, Arch. Math. 47 (1986), 198210.Google Scholar
[8] Vaughan-Lee, M., ‘Derived lengths of Burnside groups of exponent 4’, Q. J. Math. (Oxford) II. Ser. 30 (1979), 495504.Google Scholar
[9] Zelmanov, E. I., ‘Solution of the restricted Burnside problem for groups of odd order’, Izv. Akad. Nauk SSSR Ser. Mat. 54(1) (1990), 4259.Google Scholar
[10] Zelmanov, E. I., ‘Solution of the restricted Burnside problem for 2-groups’, Mat. Sb. 182(4) (1991), 568592.Google Scholar