Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T13:31:27.064Z Has data issue: false hasContentIssue false

The heat flows and harmonic maps from complete manifolds into regular balls

Published online by Cambridge University Press:  17 April 2009

Jiayu Li
Affiliation:
Institute of Mathematics, Academia Sinica, Beijing 100080, Peoples Republic of China
Silei Wang
Affiliation:
Department of Mathematics, Hangzhou University, Hangzhou 310028, Peoples Republic of China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We generalise the existence result for harmonic maps obtained by Hildebrandt-Kaul-Widman to the case where the domain manifold is complete noncompact.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1998

References

[1]Avilés, P., Choi, H. and Micallef, M., ‘Boundary behavior of harmonic maps on non-smooth domains and complete negatively curved manifolds’, J. Fund. Anal. 99 (1991), 293311.CrossRefGoogle Scholar
[2]Calabi, E., ‘An extension of E. Hopf's maximum principle with an application to Riemannian geometry’, Duke Math. J. 25 (1958), 4546.CrossRefGoogle Scholar
[3]Cheng, S.Y., ‘Liouville theorem for harmonic maps’, Proc. Sympos. Pure Math. 36 (1980), 147151.CrossRefGoogle Scholar
[4]Choi, H.I., ‘On the Liouville theorem for harmonic maps’, Proc. Amer. Math. Soc. 85 (1982), 9194.CrossRefGoogle Scholar
[5]Chen, Y. and Ding, W.-Y., ‘Blow-up and global existence for heat flows of harmonic maps’, Invent. Math. (1990), 567578.CrossRefGoogle Scholar
[6]Coron, J.-M. and Ghidaglia, J.-M., ‘Explosion en temps fini pour le flot des applications harmoniques’, C.R. Acad. Sci. Paris Sér. I Math. (1989), 339344.Google Scholar
[7]Ding, W.-Y., ‘Blow-up of solutions of heat flow for harmonic maps’, Adv. in Math. 19 (1990), 8092.Google Scholar
[8]Ding, W.-Y. and Lin, F.-H., ‘A generalization of Eells-Sampson's theorem’, J. Partial Differential Equations 5 (1992), 1322.Google Scholar
[9]Ding, W.-Y. and Wang, Y., ‘Harmonic maps of complete noncompact Riemannian manifolds’, Internal J. Math. 2 (1991), 617633.Google Scholar
[10]Eells, J. and Sampson, J.H., ‘Harmonic mappings of Riemannian manifolds’, Amer. J. Math. 86 (1964), 109169.CrossRefGoogle Scholar
[11]Greene, R.E. and Wu, H., Function theory on manifolds which possess a pole, Lecture Notes in Math. 699 (Springer-Verlag, Berlin, Heidelberg, New York, 1979).CrossRefGoogle Scholar
[12]Hamilton, R., Harmonic maps of manifolds with boundary, Lecture Notes in Math. 471 (Springer-Verlag, Berlin, Heidelberg, New York, 1974).Google Scholar
[13]Hildebrandt, S., ‘Harmonic mappings of Riemannian manifolds’, in Harmonic Maps and Minimal Immersions (Montecatini 1984), Lecture Notes in Math. 1161 (Springer-Verlag, Berlin, Heidelberg, New York, 1985).Google Scholar
[14]Hildebrandt, S., Jost, J. and Widman, K-O., ‘Harmonic mappings and minimal submanifolds’, Invent. Math. 62 (1980), 269298.CrossRefGoogle Scholar
[15]Hildebrandt, S., Kaul, H. and Widman, K-O., ‘An existence theorem for harmonic mappings of Riemannian manifolds’, Acta Math. 138 (1977), 116.CrossRefGoogle Scholar
[16]Jost, J., ‘Ein Existenzbeweis für harmonische Abbildungen, die ein Dirichletproblem lösen, mittels der Methode des Wärmeflusses’, Manuscripta Math. 34 (1981), 1725.CrossRefGoogle Scholar
[17]Jost, J., Harmonic mappings between Riemannian manifolds, Proc. Centre Math. Analysis 4 (Aust. Nat. Univ. Press, Canberra, Australia, 1983).Google Scholar
[18]Kendall, W.S., ‘Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence’, Proc. London Math. Soc. 61 (1990), 371406.CrossRefGoogle Scholar
[19]Karp, K. and Li, P., ‘The heat equation on complete Riemannian manifolds’, (unpublished).Google Scholar
[20]Li, J., ‘The heat flows and harmonic maps of complete noncompact Riemannian manifolds’, Math. Z. 212 (1993), 161173.CrossRefGoogle Scholar
[21]Li, J., ‘Heat flows and harmonic maps with a free boundary’, Math. Z. 217 (1994), 487495.CrossRefGoogle Scholar
[22]Li, P. and Tam, L.-F., ‘The heat equation and harmonic maps of complete manifolds’, Invent. Math. 105 (1991), 146.CrossRefGoogle Scholar
[23]Liao, G.G. and Tam, L.-T., ‘On the heat equation for harmonic maps from noncompact manifolds’, Pacific J. Math. 153 (1992), 129145.CrossRefGoogle Scholar
[24]Schoen, R. and Yau, S.-T., ‘Compact group actions and the topology of manifolds with nonpositive curvature’, Topology 18 (1979), 361380.CrossRefGoogle Scholar
[25]Yu, Q.-H., ‘Bounded harmonic maps’, Acta Math. Sinica 1 (1985), 1621.Google Scholar