No CrossRef data available.
Published online by Cambridge University Press: 17 April 2009
We give a simple proof of the result that if the total space of a holomorphic fiber bundle is (complete) hyperbolic then both the fiber and the base manifold must be (complete) hyperbolic. Shoshichi Kobayashi tried to set up examples where the total space is hyperbolic but the base is not; our theorem shows that any such example is bound to fail.