Published online by Cambridge University Press: 11 November 2015
We generalise a result of Hilbert which asserts that the Riemann zeta-function ${\it\zeta}(s)$ is hypertranscendental over $\mathbb{C}(s)$. Let ${\it\pi}$ be any irreducible cuspidal automorphic representation of $\text{GL}_{m}(\mathbb{A}_{\mathbb{Q}})$ with unitary central character. We establish a certain type of functional difference–differential independence for the associated $L$-function $L(s,{\it\pi})$. This result implies algebraic difference–differential independence of $L(s,{\it\pi})$ over $\mathbb{C}(s)$ (and more strongly, over a certain field ${\mathcal{F}}_{s}$ which contains $\mathbb{C}(s)$). In particular, $L(s,{\it\pi})$ is hypertranscendental over $\mathbb{C}(s)$. We also extend a result of Ostrowski on the hypertranscendence of ordinary Dirichlet series.