Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T05:25:57.963Z Has data issue: false hasContentIssue false

IMPROVING AN INEQUALITY FOR THE DIVISOR FUNCTION

Published online by Cambridge University Press:  28 March 2018

JEFFREY P. S. LAY*
Affiliation:
Mathematical Sciences Institute, The Australian National University, Canberra, ACT 0200, Australia email jeffrey.lay@anu.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using elementary means, we improve an explicit bound on the divisor function due to Friedlander and Iwaniec [Opera de Cribro, American Mathematical Society, Providence, RI, 2010]. Consequently, we modestly improve a result regarding a sieving inequality for Gaussian sequences.

Type
Research Article
Copyright
© 2018 Australian Mathematical Publishing Association Inc. 

References

Friedlander, J. and Iwaniec, H., ‘Gaussian sequences in arithmetic progressions’, Funct. Approx. Comment. Math. 37(1) (2007), 149157.CrossRefGoogle Scholar
Friedlander, J. and Iwaniec, H., Opera de Cribro (American Mathematical Society, Providence, RI, 2010).CrossRefGoogle Scholar
Iwaniec, H. and Munshi, R., ‘Cubic polynomials and quadratic forms’, J. Lond. Math. Soc. (2) 81(1) (2010), 4564.CrossRefGoogle Scholar
Landreau, B., ‘Majorations de fonctions arithmétiques en moyenne sur des ensembles de faible densité’, Sémin. Théor. Nombres 1987–1988 (1988), 18 pages.Google Scholar